目标:1. 微调一个属于自己的聊天机器人。
2. 实践模型微调。
1. 使用Conda构建一个python 3.1的虚拟环境
cd ~
#git clone 本repo
git clone https://github.com/InternLM/Tutorial.git -b camp4
mkdir -p /root/finetune && cd /root/finetune
conda create -n xtuner-env python=3.10 -y
conda activate xtuner-env
2. 安装Xtuner
git clone https://github.com/InternLM/xtuner.git
cd /root/finetune/xtuner
pip install -e '.[all]'
pip install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 --index-url https://download.pytorch.org/whl/cu121
pip install transformers==4.39.0
这步需要等待一段时间,稍安勿躁。
验证是否安装成功。
3. 创建一个新的文件夹用于存储微调数据
mkdir -p /root/finetune/data && cd /root/finetune/data
cp -r /root/Tutorial/data/assistant_Tuner.jsonl /root/finetune/data
4. 创建修改脚本
脚本文件内容:
import json
import argparse
from tqdm import tqdm
def process_line(line, old_text, new_text):
# 解析 JSON 行
data = json.loads(line)
# 递归函数来处理嵌套的字典和列表
def replace_text(obj):
if isinstance(obj, dict):
return {k: replace_text(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [replace_text(item) for item in obj]
elif isinstance(obj, str):
return obj.replace(old_text, new_text)
else:
return obj
# 处理整个 JSON 对象
processed_data = replace_text(data)
# 将处理后的对象转回 JSON 字符串
return json.dumps(processed_data, ensure_ascii=False)
def main(input_file, output_file, old_text, new_text):
with open(input_file, 'r', encoding='utf-8') as infile, \
open(output_file, 'w', encoding='utf-8') as outfile:
# 计算总行数用于进度条
total_lines = sum(1 for _ in infile)
infile.seek(0) # 重置文件指针到开头
# 使用 tqdm 创建进度条
for line in tqdm(infile, total=total_lines, desc="Processing"):
processed_line = process_line(line.strip(), old_text, new_text)
outfile.write(processed_line + '\n')
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Replace text in a JSONL file.")
parser.add_argument("input_file", help="Input JSONL file to process")
parser.add_argument("output_file", help="Output file for processed JSONL")
parser.add_argument("--old_text", default="尖米", help="Text to be replaced")
parser.add_argument("--new_text", default="机智流", help="Text to replace with")
args = parser.parse_args()
main(args.input_file, args.output_file, args.old_text, args.new_text)
将修改脚本中的关键字替换成自己想要的名字。
执行脚本。
确认已经生成了新的文件,并修改了内容。
6. 创建一个符号链接到finetune/model 目录下面,链接系统共享的LLM
7. 修改模型config
首先获取官方config
在新生成的config文件中,修改如下内容。
8. 启动微调
cd /root/finetune
conda activate xtuner-env
xtuner train ./config/internlm2_5_chat_7b_qlora_alpaca_e3_copy.py --deepspeed deepspeed_zero2 --work-dir ./work_dirs/assistTuner
可以看到A100 的占用率和显存的占用率明显提高。
9. 权重转换
cd /root/finetune/work_dirs/assistTuner
conda activate xtuner-env
# 先获取最后保存的一个pth文件
pth_file=`ls -t /root/finetune/work_dirs/assistTuner/*.pth | head -n 1`
export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER=GNU
xtuner convert pth_to_hf ./internlm2_5_chat_7b_qlora_alpaca_e3_copy.py ${pth_file} ./hf
注意如果不能正确获取pth_file变量中的内容,则手动输类似于如下结果。
10. 合并模型
cd /root/finetune/work_dirs/assistTuner
conda activate xtuner-env
export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER=GNU
xtuner convert merge /root/finetune/models/internlm2_5-7b-chat ./hf ./merged --max-shard-size 2GB
11. WebUI对话测试
找到Tutorial/tools/L1_Xtuner_code目录
修改xtuner_streamlit_demo.py的内容
启动应用
简单测试一下,发现模型已经把预支的"董董董" fine-tune进了adaptor层。