Mathematically Hard LightOJ-1007(欧拉定理+前缀和)

本文探讨了看似复杂的数学问题如何通过计算机变得易于解决。特别地,介绍了一个具体问题,即计算从a到b(包括a和b)的所有数字的分数之和。分数定义为一个小于x且与x互质的相对质数的数量的平方。文章提供了使用欧拉φ函数的解决方案,并附带了C++代码实现。

Description

Mathematically some problems look hard. But with the help of the computer, some problems can be easily solvable.

In this problem, you will be given two integers a and b. You have to find the summation of the scores of the numbers from a to b (inclusive).

The score of a number is defined as the following function.score (x) = n2, where n is the number of relatively prime numbers with x, which are smaller than x

For example,

For 6, the relatively prime numbers with 6 are 1 and 5. So, score (6) = 22 = 4.

For 8, the relatively prime numbers with 8 are 1, 3, 5 and 7. So, score (8) = 42 = 16.

Now you have to solve this task.

Input

Input starts with an integer T (≤ 105), denoting the number of test cases.Each case will contain two integers a and b (2 ≤ a ≤ b ≤ 5 * 106).

Output

For each case, print the case number and the summation of all the scores from a to b.

Sample Input

3

6 6

8 8

2 20

Sample Output

Case 1: 4

Case 2: 16

Case 3: 1237

Note

Euler's totient function  applied to a positive integer ø(n) is defined to be the number of positive integers less than or equal to ø(n) that

are relatively prime to ø(n).  is read "phi of n."Given the general prime factorization of  , one can compute ø(n)using the formula

                                                                                   

在数论中,对正整数n,欧拉函数 \varphi(n) 是小于或等于n的正整数中与n互质的数的数目,对欧拉函数打表; 

注意 :long long 需要用无符号型;

代码如下:

#include<iostream>
#include<cstdio>
using namespace std;
typedef unsigned long long ll;
const int maxx=5001000;
ll a[maxx];
void init()
{
    for(int i=0; i<maxx; i++)
        a[i]=i;
    for(int i=2; i<maxx; i++)
    {
        if(a[i]==i)
        {
            for(int j=i; j<maxx; j+=i)
                a[j]=a[j]/i*(i-1);
        }
    }
    for(int i=2; i<maxx; i++)
        a[i]=a[i]*a[i]+a[i-1];
}
int main()
{
    init();
    int t,Case=0;
    cin>>t;
    while(t--)
    {
        int n,m;
        cin>>n>>m;
        printf("Case %d: ",++Case);
        cout<<a[m]-a[n-1]<<endl;
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/dwj-2019/p/11349390.html

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值