Mathematically Hard LightOJ-1007(欧拉定理+前缀和)

本文探讨了看似复杂的数学问题如何通过计算机变得易于解决。特别地,介绍了一个具体问题,即计算从a到b(包括a和b)的所有数字的分数之和。分数定义为一个小于x且与x互质的相对质数的数量的平方。文章提供了使用欧拉φ函数的解决方案,并附带了C++代码实现。

Description

Mathematically some problems look hard. But with the help of the computer, some problems can be easily solvable.

In this problem, you will be given two integers a and b. You have to find the summation of the scores of the numbers from a to b (inclusive).

The score of a number is defined as the following function.score (x) = n2, where n is the number of relatively prime numbers with x, which are smaller than x

For example,

For 6, the relatively prime numbers with 6 are 1 and 5. So, score (6) = 22 = 4.

For 8, the relatively prime numbers with 8 are 1, 3, 5 and 7. So, score (8) = 42 = 16.

Now you have to solve this task.

Input

Input starts with an integer T (≤ 105), denoting the number of test cases.Each case will contain two integers a and b (2 ≤ a ≤ b ≤ 5 * 106).

Output

For each case, print the case number and the summation of all the scores from a to b.

Sample Input

3

6 6

8 8

2 20

Sample Output

Case 1: 4

Case 2: 16

Case 3: 1237

Note

Euler's totient function  applied to a positive integer ø(n) is defined to be the number of positive integers less than or equal to ø(n) that

are relatively prime to ø(n).  is read "phi of n."Given the general prime factorization of  , one can compute ø(n)using the formula

                                                                                   

在数论中,对正整数n,欧拉函数 \varphi(n) 是小于或等于n的正整数中与n互质的数的数目,对欧拉函数打表; 

注意 :long long 需要用无符号型;

代码如下:

#include<iostream>
#include<cstdio>
using namespace std;
typedef unsigned long long ll;
const int maxx=5001000;
ll a[maxx];
void init()
{
    for(int i=0; i<maxx; i++)
        a[i]=i;
    for(int i=2; i<maxx; i++)
    {
        if(a[i]==i)
        {
            for(int j=i; j<maxx; j+=i)
                a[j]=a[j]/i*(i-1);
        }
    }
    for(int i=2; i<maxx; i++)
        a[i]=a[i]*a[i]+a[i-1];
}
int main()
{
    init();
    int t,Case=0;
    cin>>t;
    while(t--)
    {
        int n,m;
        cin>>n>>m;
        printf("Case %d: ",++Case);
        cout<<a[m]-a[n-1]<<endl;
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/dwj-2019/p/11349390.html

基于实时迭代的数值鲁棒NMPC双模稳定预测模型(Matlab代码实现)内容概要:本文介绍了基于实时迭代的数值鲁棒非线性模型预测控制(NMPC)双模稳定预测模型的研究与Matlab代码实现,重点在于提升系统在存在不确定性与扰动情况下的控制性能与稳定性。该模型结合实时迭代优化机制,增强了传统NMPC的数值鲁棒性,并通过双模控制策略兼顾动态响应与稳态精度,适用于复杂非线性系统的预测控制问题。文中还列举了多个相关技术方向的应用案例,涵盖电力系统、路径规划、信号处理、机器学习等多个领域,展示了该方法的广泛适用性与工程价值。; 适合人群:具备一定控制理论基础和Matlab编程能力,从事自动化、电气工程、智能制造、机器人控制等领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于非线性系统的高性能预测控制设计,如电力系统调度、无人机控制、机器人轨迹跟踪等;②解决存在模型不确定性、外部扰动下的系统稳定控制问题;③通过Matlab仿真验证控制算法的有效性与鲁棒性,支撑科研论文复现与工程原型开发。; 阅读建议:建议读者结合提供的Matlab代码进行实践,重点关注NMPC的实时迭代机制与双模切换逻辑的设计细节,同时参考文中列举的相关研究方向拓展应用场景,强化对数值鲁棒性与系统稳定性之间平衡的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值