HDU 4618 Palindrome Sub-Array

Palindrome Sub-Array

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 503    Accepted Submission(s): 256


Problem Description
  A palindrome sequence is a sequence which is as same as its reversed order. For example, 1 2 3 2 1 is a palindrome sequence, but 1 2 3 2 2 is not. Given a 2-D array of N rows and M columns, your task is to find a maximum sub-array of P rows and P columns, of which each row and each column is a palindrome sequence.
 

Input
  The first line of input contains only one integer, T, the number of test cases. Following T blocks, each block describe one test case.
  There is two integers N, M (1<=N, M<=300) separated by one white space in the first line of each block, representing the size of the 2-D array.
  Then N lines follow, each line contains M integers separated by white spaces, representing the elements of the 2-D array. All the elements in the 2-D array will be larger than 0 and no more than 31415926.
 

Output
  For each test case, output P only, the size of the maximum sub-array that you need to find.
 

Sample Input
  
  
1 5 10 1 2 3 3 2 4 5 6 7 8 1 2 3 3 2 4 5 6 7 8 1 2 3 3 2 4 5 6 7 8 1 2 3 3 2 4 5 6 7 8 1 2 3 9 10 4 5 6 7 8
 

Sample Output
  
  
4
 

Source
 

Recommend
zhuyuanchen520
 
题意: 有一个n * m的矩阵, 问最大边长的回文矩阵。
回文矩阵是 每一行都是回文串, 每一列都是回文串。

思路:乱搞

#include <cstdio>  
#include <algorithm>  
using namespace std;  
  
//回文矩阵特点 水平对称,垂直对称, 离矩阵中心距离相等的值必须相等。  
//然后乱搞  
const int v = 300 + 5;  
int t, n, m, num[v][v], ans;  
bool is_ok(int ii, int jj, int len) {  
    int r_len = len;  
    for(int i = ii; i < ii + len / 2; ++i) {  
        int c_len = len;  
        for(int j = jj; j < jj + len / 2; ++j) {  
            if(num[i][j] == num[i][j + c_len - 1] && num[i][j] == num[i + r_len - 1][j] && num[i][j] == num[i + r_len - 1][j + c_len - 1])  
                c_len -= 2;  
            else  
                return false;  
        }  
        r_len -= 2;  
    }  
    return true;  
}  
int main() {  
    int i, j;  
    scanf("%d", &t);  
    while(t--) {  
        ans = 1;  
        scanf("%d%d", &n, &m);  
        for(i = 0; i < n; ++i)  
            for(j = 0; j < m; ++j)  
                scanf("%d", &num[i][j]);  
        for(i = 0; i < n; ++i)  
            for(j = 0; j < m; ++j)  
                for(int k = min(n, m); k > ans; --k) {  
                    if(i + k > n || j + k > m)  
                        continue;  
                    if(is_ok(i, j, k)) {  
                        ans = max(ans, k);  
                        break;  
                    }  
                }  
        printf("%d\n", ans);  
    }  
}  


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值