
Coursera ML Notes
Cousera上ML课程学习笔记
KnightHacker2077
CSNOOB
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Machine Learning Lecture Note 001 -- Linear Algebra Review
Matrices and Vectors Matrices 2-dimensional arrays Dimension = num row * num col A (ij) refers to the element in the ith row and jth column of matrix A Vectors 1-diomenstional arrays with one column and many rows A vector with 'n' rows is refe原创 2020-12-19 16:30:38 · 181 阅读 · 1 评论 -
Machine Learning Lecture Note 002 -- Multivariate Linear Regression
Multivariate Linear Regression Notation xj(i)x^{(i)}_{j}xj(i) = value of feature j in the ithi^{th}ith training example x(i)x^{(i)}x(i) = the input (features) of the ithi^{th}ith training example Hypothesis Function hθ(x)=θ0+θ1x1+θ2x2+...+θnxnh_{\theta}(x原创 2020-12-19 22:11:00 · 223 阅读 · 1 评论 -
Machine Learning Lecture Note 003 -- Normal Equation
hhh原创 2020-12-20 23:07:05 · 132 阅读 · 0 评论 -
Machine Learning Lecture Note 004 -- Classification
Classification vs. Regression Regression can take continuous output values, while classification can only take discrete values. (0,1,etc.) Binary classification problems have output values 0 or 1. Use linear regression and map all predictions greater th原创 2020-12-21 00:13:20 · 170 阅读 · 0 评论