
Coursera ML Notes
Cousera上ML课程学习笔记
KnightHacker2077
CSNOOB
展开
-
Machine Learning Lecture Note 001 -- Linear Algebra Review
Matrices and Vectors Matrices 2-dimensional arraysDimension = num row * num colA (ij) refers to the element in the ith row and jth column of matrix A Vectors 1-diomenstional arrays with one column and many rowsA vector with 'n' rows is refe原创 2020-12-19 16:30:38 · 172 阅读 · 1 评论 -
Machine Learning Lecture Note 002 -- Multivariate Linear Regression
Multivariate Linear RegressionNotationxj(i)x^{(i)}_{j}xj(i) = value of feature j in the ithi^{th}ith training examplex(i)x^{(i)}x(i) = the input (features) of the ithi^{th}ith training exampleHypothesis Functionhθ(x)=θ0+θ1x1+θ2x2+...+θnxnh_{\theta}(x原创 2020-12-19 22:11:00 · 207 阅读 · 1 评论 -
Machine Learning Lecture Note 003 -- Normal Equation
hhh原创 2020-12-20 23:07:05 · 129 阅读 · 0 评论 -
Machine Learning Lecture Note 004 -- Classification
Classification vs. RegressionRegression can take continuous output values, while classification can only take discrete values. (0,1,etc.)Binary classification problems have output values 0 or 1.Use linear regression and map all predictions greater th原创 2020-12-21 00:13:20 · 158 阅读 · 0 评论