题目:
Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000.
Example 1:
Input: “babad”
Output: “bab”
Note: “aba” is also a valid answer.
Example 2:
Input: “cbbd”
Output: “bb”
方法1:
遍历字符串中的每个字符,以每个字符为中心,向外扩散,记录回文字符串起始位置和长度,分字符串为奇数和偶数两种情况
c++:
class Solution {
public:
int lo = 0;
int maxLen = 0;
string longestPalindrome(string s) {
if(s.size() < 2) return s;
for(int i = 0; i < s.size() - 1; i++){
//假设回文字符串为奇数
findPalindromic(s, i, i);
//假设回文字符串为偶数
findPalindromic(s, i, i + 1);
}
return s.substr(lo, maxLen);
}
void findPalindromic(string s, int left, int right){
while(left >= 0 && right < s.size() && s[left] == s[right]){
left--;
right++;
}
if((right - left - 1) > maxLen){
maxLen = (right - left - 1);
lo = left + 1;
}
}
};
java:
substring函数参数起始位置和结束位置,前闭后开
c++ substr函数参数起始位置和长度
class Solution {
private int lo = 0;
private int maxLen = 0;
public String longestPalindrome(String s) {
if(s.length() < 2) return s;
for(int i = 0; i < s.length() - 1; i++){
//假设回文字符串为奇数
findPalindromic(s, i, i);
//假设回文字符串为偶数
findPalindromic(s, i, i + 1);
}
return s.substring(lo, lo + maxLen);
}
private void findPalindromic(String s, int left, int right){
while(left >= 0 && right < s.length() && s.charAt(left) == s.charAt(right)){
left--;
right++;
}
if((right - left - 1) > maxLen){
maxLen = (right - left - 1);
lo = left + 1;
}
}
}
python:
s[left + 1 : right]中间是冒号
class Solution(object):
def longestPalindrome(self, s):
"""
:type s: str
:rtype: str
"""
res = ""
if len(s) < 2: return s
for i in xrange(len(s)):
temp = self.findPalindromic(s, i, i)
if len(temp) > len(res):
res = temp
temp = self.findPalindromic(s, i, i + 1)
if len(temp) > len(res):
res = temp
return res
def findPalindromic(self, s, left, right):
while left >= 0 and right < len(s) and s[left] == s[right]:
left -= 1
right += 1
return s[left + 1 : right]
方法2:
与方法1的不同点
- 首先判断剩下的长度是否小于maxLen的一半,如果是则不可能是最大长度,直接break
- 不在考虑奇偶两种情况,首先left 和 right 都指向 i,如果right后面有重复字符,则跳过 (对应偶数情况)
最后right指向重复的最后一个元素, 如 noon,left指向第一个o,right指向第二个o,对于 bob,不用跳过,left和right都指向o - i不在是+1,而是i = right + 1
- 判断回文是s[left - 1] == s[right + 1]而不是方法1中s[left] == s[right],注意边界的处理 如果有重复字符,自然s[left] == s[right]成立,自然开始比较s[left - 1] == s[right + 1],如果没有重复字符,left和right指向的同一个字符,自然相等
- 判断回文结束后,left和right指向回文串的首尾元素,长度是right - left + 1,从left开始,方法1,left和right指向回文串的首尾元素的前一个元素和后一个元素,长度是right - left - 1,从left + 1开始
class Solution {
public:
string longestPalindrome(string s) {
if(s.size() < 2) return s;
int n = s.size();
int lo = 0;
int maxLen = 0;
for(int i = 0; i < n;){
if((n - i) <= (maxLen / 2)) break;
int left = i, right = i;
while(right < (n - 1) && s[right] == s[right + 1]) right++;
i = right + 1;
while(left > 0 && right < (n - 1) && s[left - 1] == s[right + 1]){
left--;
right++;
}
if(maxLen < (right - left + 1)){
maxLen = (right - left + 1);
lo = left;
}
}
return s.substr(lo, maxLen);
}
};
java:
class Solution {
public String longestPalindrome(String s) {
if(s.length() < 2) return s;
int n = s.length();
int lo = 0;
int maxLen = 0;
for(int i = 0; i < n;){
if((n - i) <= (maxLen / 2)) break;
int left = i, right = i;
while(right < (n - 1) && s.charAt(right) == s.charAt(right + 1)) right++;
i = right + 1;
while(left > 0 && right < (n - 1) && s.charAt(left - 1) == s.charAt(right + 1)){
left--;
right++;
}
if(maxLen < (right - left + 1)){
maxLen = (right - left + 1);
lo = left;
}
}
return s.substring(lo, lo + maxLen);
}
}
python:
class Solution(object):
def longestPalindrome(self, s):
"""
:type s: str
:rtype: str
"""
n = len(s)
lo, maxLen = 0, 0
if len(s) < 2: return s
for i in xrange(len(s)):
if (n - i) <= (maxLen / 2): break
left = right = i
while right < (n - 1) and s[right] == s[right + 1]: right += 1;
i = right + 1
while left > 0 and right < (n - 1) and s[left - 1] == s[right + 1]:
left -= 1
right += 1
if maxLen < (right - left + 1):
maxLen = (right - left + 1)
lo = left
return s[lo : lo + maxLen]
方法3:动态规划法
dp[i][j]代表从i开始,到j结束的字符串,为0,表示不是回文串,为1是回文串
- i=j,只有一个字符,自然是回文串
- i + 1 = j ,i,j相邻,如果满足s[i] == s[j] 是回文串
- j - i >= 2 如果满足s[i] == s[j]并且dp[i+1][j-1]是回文串,才是回文串
c++:
maxLen需初始设置为1,因为maxLen只在内层循环更新,如果设为0
s= “ac”,则输出为空串,错误
class Solution {
public:
string longestPalindrome(string s) {
if(s.size() < 2) return s;
int n = s.size();
int lo = 0;
int maxLen = 1;
int dp[n][n] = {0};
for(int i = 0; i < n; i++){
dp[i][i] = 1;
for(int j = 0; j < i; j++){
dp[j][i] = (s[i] == s[j]) && (((i - j) < 2) || dp[j + 1][i - 1]);
if(dp[j][i] && maxLen < (i - j + 1)){
lo = j;
maxLen = (i - j + 1);
}
}
}
return s.substr(lo, maxLen);
}
};
java:
特别注意java中bool和int不能转换
int数组默认值为0
class Solution {
public String longestPalindrome(String s) {
if(s.length() < 2) return s;
int n = s.length();
int lo = 0;
int maxLen = 1;
int[][] dp = new int[n][n];
for(int i = 0; i < n; i++){
dp[i][i] = 1;
for(int j = 0; j < i; j++){
if((s.charAt(i) == s.charAt(j)) && (((i - j) < 2) || dp[j + 1][i - 1] == 1)){
dp[j][i] = 1;
}
if(dp[j][i] == 1 && maxLen < (i - j + 1)){
lo = j;
maxLen = (i - j + 1);
}
}
}
return s.substring(lo, lo + maxLen);
}
}
python:
创建二维数组 dp = [[0] * n for i in range(n)]
不应 dp = [[0] * n ] *n
class Solution(object):
def longestPalindrome(self, s):
"""
:type s: str
:rtype: str
"""
n = len(s)
lo, maxLen = 0, 1
if len(s) < 2: return s
dp = [[0] * n for i in range(n)]
for i in xrange(len(s)):
dp[i][i] = 1
j = 0
while j < i:
dp[j][i] = (s[i] == s[j]) and (((i - j) < 2) or dp[j + 1][i - 1])
if dp[j][i] and maxLen < (i - j + 1):
lo = j
maxLen = (i - j + 1)
j += 1
return s[lo : lo + maxLen]
方法4:
马拉车算法 Manacher’s Algorithm将时间复杂度提升到了O(n)
马拉车算法
C++:
注意点:string末尾自动加\0,故不用手动加
class Solution {
public:
string longestPalindrome(string s) {
string t = "$#";
for(int i = 0; i < s.size(); i++){
t += s[i];
t += "#";
}
vector<int> p(t.size(), 0);
// int p[t.size()] = {0};
int id = 0, mx = 0, resCenter = 0, resLen = 0;
for(int i = 1; i < t.size(); i++){
p[i] = (mx > i) ? min(p[2 * id - i], mx - i) : 1;
while(t[i + p[i]] == t[i - p[i]]) p[i]++;
if(i + p[i] > mx){
id = i;
mx = (i + p[i]);
}
if(p[i] > resLen){
resCenter = i;
resLen = p[i];
}
}
return s.substr((resCenter - resLen) / 2, resLen - 1);
}
};
java:
- 使用StringBuilder 而不是String 因为String 只有+操作,会创建新的对象,耗时间和空间 用StringBuilder则没有此问题
- String后没\0,手动加,同时i < t.length() - 1,相应减一位
class Solution {
public String longestPalindrome(String s) {
StringBuilder t = new StringBuilder("$#");
for(int i = 0; i < s.length(); i++){
t.append(s.charAt(i));
t.append("#");
}
t.append("\0");
//System.out.println(t);
// int p[t.size()] = {0};
int[] p = new int[t.length()];
int id = 0, mx = 0, resCenter = 0, resLen = 0;
for(int i = 1; i < t.length() - 1; i++){
p[i] = (mx > i) ? Math.min(p[2 * id - i], mx - i) : 1;
while(t.charAt(i + p[i]) == t.charAt(i - p[i])) p[i]++;
//System.out.println("i是"+i+"p[i]是"+p[i]);
if(i + p[i] > mx){
id = i;
mx = (i + p[i]);
}
if(p[i] > resLen){
resCenter = i;
resLen = p[i];
}
}
return s.substring((resCenter - resLen) / 2, (resCenter - resLen) / 2 + resLen - 1);
}
}
python:
python可以连等
class Solution(object):
def longestPalindrome(self, s):
"""
:type s: str
:rtype: str
"""
t = "$#"
for i in xrange(len(s)):
t += s[i]
t += "#"
t += "\0"
p = [0] * len(t)
id = mx = resCenter = resLen = 0
for i in range(1, len(t) - 1):
p[i] = min(p[2 * id - i], mx - i) if (mx > i) else 1
while t[i + p[i]] == t[i - p[i]]: p[i] += 1
if i + p[i] > mx:
id = i
mx = (i + p[i])
if p[i] > resLen:
resCenter = i
resLen = p[i]
return s[(resCenter - resLen) / 2 : (resCenter - resLen) / 2 + resLen - 1]