1004 max program

本文介绍了一个关于在限定时间内如何最大化观看电视节目的数量的问题。通过将节目按结束时间排序,并选择最早结束且不冲突的节目来实现目标。代码使用了C++实现,包括输入输出、结构体定义及排序等基本操作。

1004  Problem E

    “今年暑假不AC?”
“是的。”
“那你干什么呢?”
“看世界杯呀,笨蛋!”
“@#$%^&*%...”

    题目概述:在一段连续时间内,判断可以观看完整电视节目的最大数目。

    思路:要求可以最大数目,即令每一节目,按结束先后进行排序,先结束的

排在最前面,然后按后续节目开始时间,与前一节目结束时间比较,在不冲突的

情况下得到能够观看完整节目的最大数。

    感想:因为之前学习贪心,这样的例子,作为最典型的题目出现,所以做

起来并没有太大的难度,只要在排序之后,完成比较,代码并没有什么难度!

    #include<iostream>

#include <stdio.h>

#include <algorithm>

using namespace std;

struct Ti{

   int s;

   int e;

};

bool cmp(const Ti &a,const Ti &b){

    if(a.e<=b.e) returntrue;

    return false;

};

 

int main(){

    int i,n;

    Ti pro[101];

   while(cin>>n&&n!=0){

       for(i=0;i<n;i++){

      cin>>pro[i].s>>pro[i].e;

       }

       sort(pro,pro+n,cmp);

    int m=1,preEnd=0;

    for(int j=1;j<n;j++)

       if(pro[j].s>=pro[preEnd].e){

        m++;

        preEnd=j;

    }

   cout<<m<<endl;

 

    }

    return 0;

}

一、数据采集层:多源人脸数据获取 该层负责从不同设备 / 渠道采集人脸原始数据,为后续模型训练与识别提供基础样本,核心功能包括: 1. 多设备适配采集 实时摄像头采集: 调用计算机内置摄像头(或外接 USB 摄像头),通过OpenCV的VideoCapture接口实时捕获视频流,支持手动触发 “拍照”(按指定快捷键如Space)或自动定时采集(如每 2 秒采集 1 张),采集时自动框选人脸区域(通过Haar级联分类器初步定位),确保样本聚焦人脸。 支持采集参数配置:可设置采集分辨率(如 640×480、1280×720)、图像格式(JPG/PNG)、单用户采集数量(如默认采集 20 张,确保样本多样性),采集过程中实时显示 “已采集数量 / 目标数量”,避免样本不足。 本地图像 / 视频导入: 支持批量导入本地人脸图像文件(支持 JPG、PNG、BMP 格式),自动过滤非图像文件;导入视频文件(MP4、AVI 格式)时,可按 “固定帧间隔”(如每 10 帧提取 1 张图像)或 “手动选择帧” 提取人脸样本,适用于无实时摄像头场景。 数据集对接: 支持接入公开人脸数据集(如 LFW、ORL),通过预设脚本自动读取数据集目录结构(按 “用户 ID - 样本图像” 分类),快速构建训练样本库,无需手动采集,降低系统开发与测试成本。 2. 采集过程辅助功能 人脸有效性校验:采集时通过OpenCV的Haar级联分类器(或MTCNN轻量级模型)实时检测图像中是否包含人脸,若未检测到人脸(如遮挡、侧脸角度过大),则弹窗提示 “未识别到人脸,请调整姿态”,避免无效样本存入。 样本标签管理:采集时需为每个样本绑定 “用户标签”(如姓名、ID 号),支持手动输入标签或从 Excel 名单批量导入标签(按 “标签 - 采集数量” 对应),采集完成后自动按 “标签 - 序号” 命名文件(如 “张三
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值