建初始堆 方法一:
(1)从最大下标的非叶子节点开始,比较其值和左右孩子的值,进行调整,同时对调整节点的子树递归地进行类似的做法;
// 调整index节点及其子树,使其满足大根堆性质,
void HeapAdjust(int *a,int index,int heap_size)
{
int left = 2*index;
int right = 2*index + 1;
int dest = index,temp;
if (left <= heap_size && a[left]> a[dest])
{
dest = left;
}
if (right <= heap_size && a[right]> a[dest])
{
dest = right;
}
if (dest != index)
{
temp = a[index];
a[index] = a[dest];
a[dest] = temp;
HeapAdjust(a,dest,heap_size);
}
}
void buildHeap(int *a,int heap_size) //下标从heap_size/2+1 到 heap_size的节点,在二叉树中为叶子节点,可以看成只有一个节点的堆,满足最大堆。所以建堆从下标heap_size/2开始,逐渐减至1.
{
for (int i = heap_size/2;i >= 1;i--)
{
HeapAdjust(a,i,heap_size);
}
}
堆排序:
void myHeapSort(int *a,int heap_size)
{
buildHeap(a,10); //建初始堆
for (int i = heap_size; i >= 2; i--)
{
int temp = a[i];
a[i] = a[1];
a[1] = temp; // 将当前堆最大值和数组尾部值交换,交换后最大值加入到有序数组
HeapAdjust(a,1,i-1); // 交换后的堆顶元素不满足堆的性质,注意此时只有堆顶元素不满足大根堆的性质,只需调整a[1]即可。
}
}
建初始堆 方法二:插入法建堆
void insertToHeap(int *a,int i,int key)
{
while ((i/2 >=1) && a[i] > a[i/2]) //新加入的节点比父节点大,与父节点交换,同时一直向上与父节点交换直至下标为1
{
int temp = a[i];
a[i] = a[i/2];
a[i/2] =temp;
i/=2;
}
}
void buildHeapForInsert(int *a, int length) //插入法建堆,初始堆为a[1],然后逐一将a[i](i=2,……length)添加到堆中。每添加一个,保证形成的堆均为最大堆
{
int heap_size = 1;
for (int i = 2;i<= length;i++)
{
heap_size++;
insertToHeap(a,heap_size,a[i]);
}
}
void myHeapSortForInsert(int *a,int heap_size)
{
buildHeapForInsert(a,10); //插入法建堆
for (int i = heap_size; i >= 2; i--)
{
int temp = a[i];
a[i] = a[1];
a[1] = temp;
HeapAdjust(a,1,i-1);
}
}
int main()
{
int a[11]={0,3,9,6,12,5,8,21,16,1,10}; //堆数据从a[1]开始。a[0]为无效数据。
myHeapSort(a,10);
for (int i = 1;i <= 10; i++)
{
cout<<a[i]<<" ";
}
cout<<endl;
myHeapSortForInsert(a,10);
for (int i = 1;i <= 10; i++)
{
cout<<a[i]<<" ";
}
cout<<endl;
system("pause");
}