HDU 1689 Just a Hook 线段树区间更新求和

本文介绍了一种使用线段树解决区间更新问题的方法,具体为在游戏中通过一系列操作改变屠夫Pudge钩子的价值,并最终计算其总价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


Just a Hook

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 18894    Accepted Submission(s): 9483


Problem Description
In the game of DotA, Pudge’s meat hook is actually the most horrible thing for most of the heroes. The hook is made up of several consecutive metallic sticks which are of the same length.



Now Pudge wants to do some operations on the hook.

Let us number the consecutive metallic sticks of the hook from 1 to N. For each operation, Pudge can change the consecutive metallic sticks, numbered from X to Y, into cupreous sticks, silver sticks or golden sticks.
The total value of the hook is calculated as the sum of values of N metallic sticks. More precisely, the value for each kind of stick is calculated as follows:

For each cupreous stick, the value is 1.
For each silver stick, the value is 2.
For each golden stick, the value is 3.

Pudge wants to know the total value of the hook after performing the operations.
You may consider the original hook is made up of cupreous sticks.
 

Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 10 cases.
For each case, the first line contains an integer N, 1<=N<=100,000, which is the number of the sticks of Pudge’s meat hook and the second line contains an integer Q, 0<=Q<=100,000, which is the number of the operations.
Next Q lines, each line contains three integers X, Y, 1<=X<=Y<=N, Z, 1<=Z<=3, which defines an operation: change the sticks numbered from X to Y into the metal kind Z, where Z=1 represents the cupreous kind, Z=2 represents the silver kind and Z=3 represents the golden kind.
 

Output
For each case, print a number in a line representing the total value of the hook after the operations. Use the format in the example.
 

Sample Input
   
1 10 2 1 5 2 5 9 3
 

Sample Output
   
Case 1: The total value of the hook is 24.
 

Source
 

屠夫的钩子长是n,且每个值都是1,可以使[a,b]区间的值变为c,求m次操作后,钩子的价值是多少。
线段树区间更新并且只求一次,在树的结构中加一个标志type表示此区间的值是type,在更新此区间的时候,同时也要更新此区间孩子的值。
//795MS	6224K
#include<stdio.h>
#include<algorithm>
#include<string.h>
#define M 100007
using namespace std;
struct node
{
    int l,r,mid,val,type;
}tree[M<<2];
int s[M];
void build(int left,int right,int i)//建树
{
    tree[i].l=left;tree[i].r=right;
    tree[i].mid=(left+right)>>1;tree[i].type=0;
    if(left==right){tree[i].val=1; return;}
    build(left,tree[i].mid,i*2);
    build(tree[i].mid+1,right,i*2+1);
    tree[i].val=tree[i*2].val+tree[i*2+1].val;
}
void update(int left,int right,int val,int i)
{
    if(tree[i].l>=left&&tree[i].r<=right){tree[i].val=(right-left+1)*val;tree[i].type=val; return;}
    else
    {
        if(tree[i].type)
        {
            tree[i*2].type=tree[i].type;
            tree[i*2].val=(tree[i*2].r-tree[i*2].l+1)*tree[i].type;
            tree[i*2+1].type=tree[i].type;
            tree[i*2+1].val=(tree[i*2+1].r-tree[i*2+1].l+1)*tree[i].type;
            tree[i].type=0;
        }
        if(tree[i].mid<left)update(left,right,val,2*i+1);
        else if(tree[i].mid>=right)update(left,right,val,2*i);
        else
        {
            update(left,tree[i].mid,val,2*i);
            update(tree[i].mid+1,right,val,2*i+1);
        }
        tree[i].val=tree[i*2].val+tree[i*2+1].val;
    }
}

int main()
{
    int n,m,t,cas=1;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n,&m);
        build(1,n,1);
        int a,b;
        int c;
        while(m--)
        {
            scanf("%d%d%d",&a,&b,&c);
            update(a,b,c,1);
        }
        printf("Case %d: The total value of the hook is %d.\n",cas++,tree[1].val);
    }
}


内容概要:该论文聚焦于T2WI核磁共振图像超分辨率问题,提出了一种利用T1WI模态作为辅助信息的跨模态解决方案。其主要贡献包括:提出基于高频信息约束的网络框架,通过主干特征提取分支和高频结构先验建模分支结合Transformer模块和注意力机制有效重建高频细节;设计渐进式特征匹配融合框架,采用多阶段相似特征匹配算法提高匹配鲁棒性;引入模型量化技术降低推理资源需求。实验结果表明,该方法不仅提高了超分辨率性能,还保持了图像质量。 适合人群:从事医学图像处理、计算机视觉领域的研究人员和工程师,尤其是对核磁共振图像超分辨率感兴趣的学者和技术开发者。 使用场景及目标:①适用于需要提升T2WI核磁共振图像分辨率的应用场景;②目标是通过跨模态信息融合提高图像质量,解决传统单模态方法难以克服的高频细节丢失问题;③为临床诊断提供更高质量的影像资料,帮助医生更准确地识别病灶。 其他说明:论文不仅提供了详细的网络架构设计与实现代码,还深入探讨了跨模态噪声的本质、高频信息约束的实现方式以及渐进式特征匹配的具体过程。此外,作者还对模型进行了量化处理,使得该方法可以在资源受限环境下高效运行。阅读时应重点关注论文中提到的技术创新点及其背后的原理,理解如何通过跨模态信息融合提升图像重建效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值