目前网上能找到的活动轮廓代码大都是matlab版本的,我把它转化成了基于Python3.6和Opencv3版本的代码,仅供参考。注,代码的运行效率并不高,感觉没matlab快。
CV模型。源代码下载地址:http://download.youkuaiyun.com/download/dingkeyanlail/10141194
#coding:utf-8
# author Ding Keyan
import sys
import numpy
as np
import cv2
import matplotlib.pyplot
as plt
import math
from pylab
import*
Image = cv2.imread(
'1.bmp',
1)
#读入原图
image = cv2.cvtColor(Image,cv2.COLOR_BGR2GRAY)
img=np.array(image,dtype=np.float64)
#读入到np的array中,并转化浮点类型
#初始水平集函数
IniLSF = np.ones((img.shape[
0],img.shape[
1]),img.dtype)
IniLSF[
30:
80,
30:
80]= -
1
IniLSF=-IniLSF
#画初始轮廓
Image = cv2.cvtColor(Image,cv2.COLOR_BGR2RGB)
plt.figure(
1),plt.imshow(Image),plt.xticks([]), plt.yticks([])
# to hide tick values on X and Y axis
plt.contour(IniLSF,[
0],color =
'b',linewidth=
2)
#画LSF=0处的等高线
plt.draw(),plt.show(block=
False)
def mat_math (intput,str):
output=intput
for i
in range(img.shape[
0]):
for j
in range(img.shape[
1]):
if str==
"atan":
output[i,j] = math.atan(intput[i,j])
if str==
"sqrt":
output[i,j] = math.sqrt(intput[i,j])
return output
#CV函数
def CV (LSF, img, mu, nu, epison,step):
Drc = (epison / math.pi) / (epison*epison+ LSF*LSF)
Hea =
0.5*(
1 + (
2 / math.pi)*mat_math(LSF/epison,
"atan"))
Iy, Ix = np.gradient(LSF)
s = mat_math(Ix*Ix+Iy*Iy,
"sqrt")
Nx = Ix / (s+
0.000001)
Ny = Iy / (s+
0.000001)
Mxx,Nxx =np.gradient(Nx)
Nyy,Myy =np.gradient(Ny)
cur = Nxx + Nyy
Length = nu*Drc*cur
Lap = cv2.Laplacian(LSF,-
1)
Penalty = mu*(Lap - cur)
s1=Hea*img
s2=(
1-Hea)*img
s3=
1-Hea
C1 = s1.sum()/ Hea.sum()
C2 = s2.sum()/ s3.sum()
CVterm = Drc*(-
1 * (img - C1)*(img - C1) +
1 * (img - C2)*(img - C2))
LSF = LSF + step*(Length + Penalty + CVterm)
#plt.imshow(s, cmap ='gray'),plt.show()
return LSF
#模型参数
mu =
1
nu =
0.003 *
255 *
255
num =
20
epison =
1
step =
0.1
LSF=IniLSF
for i
in range(
1,num):
LSF = CV(LSF, img, mu, nu, epison,step)
#迭代
if i %
1 ==
0:
#显示分割轮廓
plt.imshow(Image),plt.xticks([]), plt.yticks([])
plt.contour(LSF,[
0],colors=
'r',linewidth=
2)
plt.draw(),plt.show(block=
False),plt.pause(
0.01)
RSF模型:源代码下载地址:http://download.youkuaiyun.com/download/dingkeyanlail/10141195
#coding:utf-8
# author Ding Keyan
import sys
import numpy
as np
import cv2
import matplotlib.pyplot
as plt
import math
def DrawContour(LSF,p1,p2):
plt.clf()
plt.imshow(Image),plt.xticks([]), plt.yticks([])
plt.contour(LSF,[
0],color = p1,linewidth = p2)
plt.show(block=
False),plt.pause(
0.01)
def mat_math (intput,str):
output=intput
for i
in range(img.shape[
0]):
for j
in range(img.shape[
1]):
if str==
"atan":
output[i,j] = math.atan(intput[i,j])
if str==
"sqrt":
output[i,j] = math.sqrt(intput[i,j])
return output
def RSF (LSF, img, mu, nu, epison,step,lambda1,lambda2,kernel):
Drc = (epison / math.pi) / (epison*epison+ LSF*LSF)
Hea =
0.5*(
1 + (
2 / math.pi)*mat_math(LSF/epison,
"atan"))
Iy, Ix = np.gradient(LSF)
s = mat_math(Ix*Ix+Iy*Iy,
"sqrt")
Nx = Ix / (s+
0.000001)
Ny = Iy / (s+
0.000001)
Mxx,Nxx =np.gradient(Nx)
Nyy,Myy =np.gradient(Ny)
cur = Nxx + Nyy
Length = nu*Drc*cur
Lap = cv2.Laplacian(LSF,-
1)
Penalty = mu*(Lap - cur)
KIH = cv2.filter2D(Hea*img,-
1,kernel)
KH = cv2.filter2D(Hea,-
1,kernel)
f1 = KIH / KH
KIH1 = cv2.filter2D((
1-Hea)*img,-
1,kernel)
KH1 = cv2.filter2D(
1-Hea,-
1,kernel)
f2 = KIH1 / KH1
R1 = (lambda1- lambda2)*img*img
R2 = cv2.filter2D(lambda1*f1 - lambda2*f2,-
1,kernel)
R3 = cv2.filter2D(lambda1*f1*f1 - lambda2*f2*f2,-
1,kernel)
RSFterm = -Drc*(R1-
2*R2*img+R3)
LSF = LSF + step*(Length + Penalty + RSFterm)
#plt.imshow(s, cmap ='gray'),plt.show()
return LSF
Image = cv2.imread(
'1.bmp',
1)
image = cv2.cvtColor(Image,cv2.COLOR_BGR2GRAY)
img = np.float64(image)
#Kernel
sig=
3
kernel = np.ones((sig*
4+
1,sig*
4+
1),np.float64)/(sig*
4+
1)**
2
IniLSF = np.ones((img.shape[
0],img.shape[
1]),img.dtype)
IniLSF[
30:
80,
30:
80]= -
1
IniLSF=-IniLSF
Image = cv2.cvtColor(Image,cv2.COLOR_BGR2RGB)
plt.figure(
1)
DrawContour(IniLSF,
'r',
2)
# Draw contour
mu =
1
nu =
0.003 *
255 *
255
num =
50
epison =
1
step =
0.1
lambda1=lambda2=
1
LSF=IniLSF
for i
in range(
1,num):
LSF = RSF(LSF, img, mu, nu, epison,step,lambda1,lambda2,kernel)
if i %
5 ==
0:
DrawContour(LSF,
'r',
2)