mass collection

本文详细介绍了在配置Java环境变量过程中可能出现的问题——执行javac命令后导致“不是内部或者外部命令”的现象,并提供了有效的解决步骤。通过重新关闭命令行窗口并重新打开,可以确保环境变量正确生效。

之前配置java环境变量的时候一般只是执行java -version, 今天手贱多执行了一句javac,结果发现总是“不是内部或者外部命令”,环境变量的确配置没有

问题,后来发现原来要把命令行窗口关掉之后重新打开才可以。。。


基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究”展开,提出了一种结合数据驱动方法与Koopman算子理论的递归神经网络(RNN)模型线性化方法,旨在提升纳米定位系统的预测控制精度与动态响应能力。研究通过构建数据驱动的线性化模型,克服了传统非线性系统建模复杂、计算开销大的问题,并在Matlab平台上实现了完整的算法仿真与验证,展示了该方法在高精度定位控制中的有效性与实用性。; 适合人群:具备一定自动化、控制理论或机器学习背景的科研人员与工程技术人员,尤其是从事精密定位、智能控制、非线性系统建模与预测控制相关领域的研究生与研究人员。; 使用场景及目标:①应用于纳米级精密定位系统(如原子力显微镜、半导体制造设备)中的高性能预测控制;②为复杂非线性系统的数据驱动建模与线性化提供新思路;③结合深度学习与经典控制理论,推动智能控制算法的实际落地。; 阅读建议:建议读者结合Matlab代码实现部分,深入理解Koopman算子与RNN结合的建模范式,重点关注数据预处理、模型训练与控制系统集成等关键环节,并可通过替换实际系统数据进行迁移验证,以掌握该方法的核心思想与工程应用技巧。
基于粒子群算法优化Kmeans聚类的居民用电行为分析研究(Matlb代码实现)内容概要:本文围绕基于粒子群算法(PSO)优化Kmeans聚类的居民用电行为分析展开研究,提出了一种结合智能优化算法与传统聚类方法的技术路径。通过使用粒子群算法优化Kmeans聚类的初始聚类中心,有效克服了传统Kmeans算法易陷入局部最优、对初始值敏感的问题,提升了聚类的稳定性和准确性。研究利用Matlab实现了该算法,并应用于居民用电数据的行为模式识别与分类,有助于精细化电力需求管理、用户画像构建及个性化用电服务设计。文档还提及相关应用场景如负荷预测、电力系统优化等,并提供了配套代码资源。; 适合人群:具备一定Matlab编程基础,从事电力系统、智能优化算法、数据分析等相关领域的研究人员或工程技术人员,尤其适合研究生及科研人员。; 使用场景及目标:①用于居民用电行为的高效聚类分析,挖掘典型用电模式;②提升Kmeans聚类算法的性能,避免局部最优问题;③为电力公司开展需求响应、负荷预测和用户分群管理提供技术支持;④作为智能优化算法与机器学习结合应用的教学与科研案例。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,深入理解PSO优化Kmeans的核心机制,关注参数设置对聚类效果的影响,并尝试将其应用于其他相似的数据聚类问题中,以加深理解和拓展应用能力。
% ADVISOR Data file: FC_SI102_emis.m % % Data source: Dill Murrell, JDM Associates, under contract to % Argonne National Laboratory. FTP Revision Project. % % Data confidence level: % % Notes: % This file loads the variables associated with a Dodge Caravan engine, % a 3.0 L, 6-cyl., 136 hp, 1991 model year. % Maximum Power 102 kW @ 4875 rpm % Peak Torque 217 Nm @ 4143 rpm % % WARNING: This data comes from transient testing on the FTP and is % only appropriate to model transient-operation engines. % % Created on: 06/23/98 % By: Tony Markel, National Renewable Energy Laboratory, Tony_Markel@nrel.gov % % Revision history at end of file. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % FILE ID INFO %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fc_description='1991 Dodge Caravan 1.2L (93kW) SI Engine - transient data'; fc_version=2002; % version of ADVISOR for which the file was generated fc_proprietary=0; % 0=> non-proprietary, 1=> proprietary, do not distribute fc_validation=0; % 1=> no validation, 1=> data agrees with source data, % 2=> data matches source data and data collection methods have been verified fc_fuel_type='Gasoline'; fc_disp=1.2; % (L), engine displacement fc_emis=1; % boolean 0=no emis data; 1=emis data fc_cold=0; % boolean 0=no cold data; 1=cold data exists disp(['Data loaded: FC_SI93_emis.m - ',fc_description]); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SPEED & TORQUE RANGES over which data is defined %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % (rad/s), speed range of the engine fc_map_spd=[128.8 190.7 249 310.5 338.7 366.9 433.9 471.8 640.457]; % (N*m), torque range of the engine fc_map_trq=[27.1 40.6 54.2 67.7 81.3 94.8 108.4 122 135.5 149.1 162.6 176.2 ... 189.7 203.3 216.9]; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % FUEL USE AND EMISSIONS MAPS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % (g/s), fuel use map indexed vertically by fc_map_spd and % horizontally by fc_map_trq fc_fuel_map_gpkWh = [ 436.14 421.94 407.74 393.54 393.54 393.54 393.54 393.54 393.54 393.54 393.54 393.54 393.54 393.54 393.54 400.86 386.66 372.46 358.26 344.07 329.87 315.67 301.47 301.47 301.47 301.47 301.47 301.47 301.47 301.47 363.32 363.32 352.92 347.72 342.52 332.13 326.93 321.73 311.33 306.13 300.93 288.46 288.46 288.46 288.46 384.94 384.94 384.94 368.08 351.22 337.93 333.63 329.33 323.58 321.79 320 319.91 319.83 401.06 401.06 395.25 395.25 395.25 370.95 346.65 325.11 319.32 313.54 311.03 314.14 317.25 328.48 339.71 412.22 412.22 405.56 405.56 405.56 373.82 342.08 312.28 305.02 297.75 298.49 306.49 314.5 337.04 359.59 423.38 423.38 406.85 406.85 406.85 394.57 382.3 371.68 369.71 367.74 370.48 375.2 379.91 391.39 402.87 420.29 437.71 592.04 592.04 554.46 516.87 460.66 442.04 423.41 413.32 403.23 410.21 423.18 436.14 488.45 488.45 488.45 731.92 731.92 572.15 539.11 506.07 477.45 472.51 467.57 468.93 470.29 476.89 483.5 483.5 483.5 483.5]; % (g/s), engine out HC emissions indexed vertically by fc_map_spd and % horizontally by fc_map_trq fc_hc_map_gpkWh = [ 6.12 5.92 5.72 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.68 5.48 5.27 5.07 4.87 4.67 4.47 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27 3.76 3.76 3.76 3.76 3.76 3.76 3.76 3.76 3.76 3.76 3.76 3.44 3.44 3.44 3.44 4.07 4.07 4.07 4 3.93 3.83 3.78 3.73 3.63 3.585 3.54 3.5 3.46 4.4 4.4 4.23 4.23 4.23 4.035 3.84 3.63 3.56 3.49 3.41 3.405 3.4 3.46 3.52 4.24 4.24 4.39 4.39 4.39 4.07 3.75 3.43 3.335 3.24 3.19 3.23 3.27 3.425 3.58 4.07 4.07 3.53 3.53 3.53 3.645 3.76 3.8 3.795 3.79 3.76 3.76 3.76 3.82 3.88 4.06 4.24 3.86 3.86 2.11 0.36 1.07 1.64 2.21 2.885 3.56 4.26 4.445 4.63 4.63 4.63 4.63 1.66 1.66 2.13 2.36 2.59 3.06 3.29 3.52 3.83 4.14 4.45 4.76 4.76 4.76 4.76]; % (g/s), engine out CO emissions indexed vertically by fc_map_spd and % horizontally by fc_map_trq fc_co_map_gpkWh = [ 30.88 31.6 32.32 33.04 33.04 33.04 33.04 33.04 33.04 33.04 33.04 33.04 33.04 33.04 33.04 27.19 27.91 28.62 29.34 30.06 30.78 31.5 32.21 32.21 32.21 32.21 32.21 32.21 32.21 32.21 49.9 49.9 48.09 46.825 45.56 42.31 40.32 38.33 33.63 30.92 28.21 20.76 20.76 20.76 20.76 29.83 29.83 29.83 33.35 36.87 34.51 30.87 27.23 17.93 15.455 12.98 30.53 48.08 361.62 361.62 40.07 40.07 40.07 43.235 46.4 36.39 29.895 23.4 16.84 22.35 27.86 64.495 101.13 359.17 359.17 50.32 50.32 50.32 53.125 55.93 38.27 28.92 19.57 15.75 29.245 42.74 98.46 154.18 356.71 356.71 23.36 23.36 23.36 29.575 35.79 57.71 74.075 90.44 133.98 161.145 188.31 232.94 277.57 331.805 386.04 42.98 42.98 34.9 26.82 23.41 28.08 32.75 48.89 65.03 402.14 402.14 402.14 402.14 402.14 402.14 34.8 34.8 26.82 25.115 23.41 100.74 174.64 248.54 337.135 425.73 456.71 487.69 487.69 487.69 487.69]; % (g/s), engine out NOx emissions indexed vertically by fc_map_spd and % horizontally by fc_map_trq fc_nox_map_gpkWh = [ 16.82 16.85 16.88 16.91 16.91 16.91 16.91 16.91 16.91 16.91 16.91 16.91 16.91 16.91 16.91 18 18.08 18.15 18.23 18.3 18.38 18.45 18.53 18.53 18.53 18.53 18.53 18.53 18.53 18.53 10.66 10.66 16.54 18.71 20.88 23.69 24.325 24.96 24.7 23.8 22.9 18.71 18.71 18.71 18.71 21.61 21.61 21.61 24.37 27.13 29.08 29.11 29.14 27.33 25.485 23.64 19.715 15.79 5.88 5.88 22.05 22.05 22.05 24.275 26.5 27.85 27.67 27.49 25.44 23.565 21.69 17.86 14.03 4.56 4.56 22.48 22.48 22.48 24.17 25.86 26.61 26.23 25.85 23.55 21.645 19.74 16.01 12.28 3.25 3.25 26.75 26.75 26.75 26.915 27.08 27.33 27.44 27.55 27.73 17.27 6.81 4.845 2.88 2.97 3.06 27.63 27.63 27.255 26.88 26.13 25.745 25.36 24.82 24.28 6.72 4.84 2.96 3.02 3.02 3.02 17.05 17.05 16.09 15.42 14.75 13.03 11.975 10.92 9.22 7.52 5.485 3.45 3.45 3.45 3.45]; % (g/s), engine out PM emissions indexed vertically by fc_map_spd and % horizontally by fc_map_trq fc_pm_map_gpkWh=zeros(size(fc_fuel_map_gpkWh)); % (g/s), engine out O2 indexed vertically by fc_map_spd and % horizontally by fc_map_trq fc_o2_map=zeros(size(fc_fuel_map_gpkWh)); % convert g/kWh to g/s [T,w]=meshgrid(fc_map_trq, fc_map_spd); fc_map_kW=T.*w/1000; fc_fuel_map=fc_fuel_map_gpkWh.*fc_map_kW/3600; fc_co_map=fc_co_map_gpkWh.*fc_map_kW/3600; fc_nox_map=fc_nox_map_gpkWh.*fc_map_kW/3600; fc_hc_map=fc_hc_map_gpkWh.*fc_map_kW/3600; fc_pm_map=fc_pm_map_gpkWh.*fc_map_kW/3600; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Cold Engine Maps %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fc_cold_tmp=20; %deg C fc_fuel_map_cold=zeros(size(fc_fuel_map)); fc_hc_map_cold=zeros(size(fc_fuel_map)); fc_co_map_cold=zeros(size(fc_fuel_map)); fc_nox_map_cold=zeros(size(fc_fuel_map)); fc_pm_map_cold=zeros(size(fc_fuel_map)); %Process Cold Maps to generate Correction Factor Maps names={'fc_fuel_map','fc_hc_map','fc_co_map','fc_nox_map','fc_pm_map'}; for i=1:length(names) %cold to hot raio, e.g. fc_fuel_map_c2h = fc_fuel_map_cold ./ fc_fuel_map eval([names{i},'_c2h=',names{i},'_cold./(',names{i},'+eps);']) end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % LIMITS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % (N*m), max torque curve of the engine indexed by fc_map_spd fc_max_trq=[67.8 122.0 167.1 180 180 180 156.9 149.3 149.3]; % (N*m), closed throttle torque of the engine (max torque that can be absorbed) % indexed by fc_map_spd -- correlation from JDMA fc_ct_trq=4.448/3.281*(-fc_disp)*61.02/24 * ... (9*(fc_map_spd/max(fc_map_spd)).^2 + 14 * (fc_map_spd/max(fc_map_spd))); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % DEFAULT SCALING %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % (--), used to scale fc_map_spd to simulate a faster or slower running engine fc_spd_scale=1.0; % (--), used to scale fc_map_trq to simulate a higher or lower torque engine fc_trq_scale=1.0; fc_pwr_scale=fc_spd_scale*fc_trq_scale; % -- scale fc power % user definable mass scaling function fc_mass_scale_fun=inline('(x(1)*fc_trq_scale+x(2))*(x(3)*fc_spd_scale+x(4))*(fc_base_mass+fc_acc_mass)+fc_fuel_mass','x','fc_spd_scale','fc_trq_scale','fc_base_mass','fc_acc_mass','fc_fuel_mass'); fc_mass_scale_coef=[1 0 1 0]; % coefficients of mass scaling function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % STUFF THAT SCALES WITH TRQ & SPD SCALES (MASS AND INERTIA) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fc_inertia=0.1*fc_pwr_scale; % (kg*m^2), rotational inertia of the engine (unknown) fc_max_pwr=(max(fc_map_spd.*fc_max_trq)/1000)*fc_pwr_scale; % kW peak engine power fc_base_mass=1.8*fc_max_pwr; % (kg), mass of the engine block and head (base engine) % mass penalty of 1.8 kg/kW from 1994 OTA report, Table 3 fc_acc_mass=0.8*fc_max_pwr; % kg engine accy's, electrics, cntrl's - assumes mass penalty of 0.8 kg/kW (from OTA report) fc_fuel_mass=0.6*fc_max_pwr; % kg mass of fuel and fuel tank (from OTA report) fc_mass=fc_base_mass+fc_acc_mass+fc_fuel_mass; % kg total engine/fuel system mass fc_ext_sarea=0.3*(fc_max_pwr/100)^0.67; % m^2 exterior surface area of engine %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % OTHER DATA %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fc_fuel_den=0.749*1000; % (g/l), density of the fuel fc_fuel_lhv=42.6*1000; % (J/g), lower heating value of the fuel %the following was added for the new thermal modeling of the engine 12/17/98 ss and sb fc_tstat=96; % C engine coolant thermostat set temperature (typically 95 +/- 5 C) fc_cp=500; % J/kgK ave cp of engine (iron=500, Al or Mg = 1000) fc_h_cp=500; % J/kgK ave cp of hood & engine compartment (iron=500, Al or Mg = 1000) fc_hood_sarea=1.5; % m^2 surface area of hood/eng compt. fc_emisv=0.8; % emissivity of engine ext surface/hood int surface fc_hood_emisv=0.9; % emissivity hood ext fc_h_air_flow=0.0; % kg/s heater air flow rate (140 cfm=0.07) fc_cl2h_eff=0.7; % -- ave cabin heater HX eff (based on air side) fc_c2i_th_cond=500; % W/K conductance btwn engine cyl & int fc_i2x_th_cond=500; % W/K conductance btwn engine int & ext fc_h2x_th_cond=10; % W/K conductance btwn engine & engine compartment % calc "predicted" exh gas flow rate and engine-out (EO) temp fc_ex_pwr_frac=[0.40 0.30]; % -- frac of waste heat that goes to exhaust as func of engine speed fc_exflow_map=fc_fuel_map*(1+14.5); % g/s ex gas flow map: for SI engines, exflow=(fuel use)*[1 + (stoic A/F ratio)] fc_waste_pwr_map=fc_fuel_map*fc_fuel_lhv - T.*w; % W tot FC waste heat = (fuel pwr) - (mech out pwr) spd=fc_map_spd; fc_ex_pwr_map=zeros(size(fc_waste_pwr_map)); % W initialize size of ex pwr map for i=1:length(spd) fc_ex_pwr_map(i,:)=fc_waste_pwr_map(i,:)*interp1([min(spd) max(spd)],fc_ex_pwr_frac,spd(i)); % W trq-spd map of waste heat to exh end fc_extmp_map=fc_ex_pwr_map./(fc_exflow_map*1089/1000) + 20; % W EO ex gas temp = Q/(MF*cp) + Tamb (assumes engine tested ~20 C) %the following variable is not used directly in modelling and should always be equal to one %it's used for initialization purposes fc_eff_scale=1; % clean up workspace clear T w fc_waste_pwr_map fc_ex_pwr_map spd fc_map_kW %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % REVISION HISTORY %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 06/23/98 (tm): created from a_dodg3l.m % 07/06/98 (MC): corrected max power calc. in mass calc. % renamed fc_init_coolant_temp to fc_coolant_init_temp % 07/17/98 (tm): file renamed FC_SI102.M % 07/16/98 (SS): added variable fc_fuel_type under file id section % 07/17/98 (tm): fc_fuel_den changed from 0.737 to 0.749 and fc_fuel_lhv changed from 42.7 to 42.6 % 07/30/98 (sb): added A/F ratio and split of waste heat variables % 10/9/98 (vh,sb,ss): added pm and removed init conditions and added new exhaust variables % 10/13/98 (MC): added variable fc_disp under file id section % fc_ct_trq computed according to correlation from JDMA, 5/98 % 10/13/98 (MC): updated equation for fc_ct_trq (convert from ft-lb to Nm) % 12/17/98 ss,sb: added 12 new variables for engine thermal modelling. % 01/25/99 (SB): modified thermal section to work with new BD, revised FC mass calc's % 2/4/99: ss,sb changed fc_ext_sarea=0.3*(fc_max_pwr/100)^0.67 it was 0.3*(fc_max_pwr/100) % it now takes into account that surface area increases based on mass to the 2/3 power % 3/15/99:ss updated *_version to 2.1 from 2.0 % 7/9/99:tm cosmetic changes % 11/03/99:ss updated version from 2.2 to 2.21 % 01/31/01: vhj added fc_cold=0, added cold map variables, added +eps to avoid dividing by zero % 02/26/01: vhj added variable definition of fc_o2_map (used in NOx absorber emis.) % 03/15/01: vhj,ss; fixed fc_o2_map to use fc_fuel_map_gpkwh instead of fc_fuel_map % 7/30/01:tm added user definable mass scaling function mass=f(fc_spd_scale,fc_trq_scale,fc_base_mass,fc_acc_mass,fc_fuel_mass) 参数名称 参数值 额定功率/kW 55 峰值功率/kW 110 额定转矩/(N·m) 110 峰值转矩/(N·m) 215 额定转速/(r/min) 5000 最高转速/(r/min) 9500
06-16
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值