Embroidery digitization

本文介绍了将图像文件转换为可由刺绣机使用的格式的过程。详细解释了位图和矢量图两种主要的艺术形式,并讨论了它们如何被转换为刺绣文件。矢量艺术因其易于调整大小且不失真而成为优选。

Digitizing is the process that changes an image file into a workable embroidery file. Today embroidery is done by stitching machines that must have a proper embroidery format to complete the task. Many types of formats are available. These can be classified into two groups: Bitmap art & Vector art types.

 

Bitmap Artwork is very common through out the Internet. The definition of bitmap is: "The method of storing information that maps an image pixel, bit by bit". Bitmap image are simply pixels or dots used to create an image. Bitmaps are very good for websites. However, they are not very useful in print work as they cannot be resized with efficiency. Jpeg is a common format for bitmap artwork.

 

Vector Artwork is a much more recent technology. The definition of vector artwork is: "Artwork that uses a mathematical language to describe color, shape, and placement information of the individual components of an image". Vector uses math to create its images. Therefore it can resize an image and can make it smaller or longer without losing its quality. This makes vector the perfect medium for print work as a single original design of artwork can be used for business cards as well as for billboards. EPS is a common format for vector artwork.

 

Vector artwork is preferred in the embroidery image as it can be imported into the digitizers software very easily. All images - bitmap or vector -must be manually converted into a stitch file. A stitch file actually contains the stitch patterns and thread colors for the sewing. This process is called digitizing.

 

【电动汽车充电站有序充电调度的分散式优化】基于蒙特卡诺和拉格朗日的电动汽车优化调度(分时电价调度)(Matlab代码实现)内容概要:本文介绍了基于蒙特卡洛和拉格朗日方法的电动汽车充电站有序充电调度优化方案,重点在于采用分散式优化策略应对分时电价机制下的充电需求管理。通过构建数学模型,结合不确定性因素如用户充电行为和电网负荷波动,利用蒙特卡洛模拟生成大量场景,并运用拉格朗日松弛法对复杂问题进行分解求解,从而实现全局最优或近似最优的充电调度计划。该方法有效降低了电网峰值负荷压力,提升了充电站运营效率与经济效益,同时兼顾用户充电便利性。 适合人群:具备一定电力系统、优化算法和Matlab编程基础的高校研究生、科研人员及从事智能电网、电动汽车相关领域的工程技术人员。 使用场景及目标:①应用于电动汽车充电站的日常运营管理,优化充电负荷分布;②服务于城市智能交通系统规划,提升电网与交通系统的协同水平;③作为学术研究案例,用于验证分散式优化算法在复杂能源系统中的有效性。 阅读建议:建议读者结合Matlab代码实现部分,深入理解蒙特卡洛模拟与拉格朗日松弛法的具体实施步骤,重点关注场景生成、约束处理与迭代收敛过程,以便在实际项目中灵活应用与改进。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值