IDEA 运行 Hadoop WordCount示例

本文介绍如何搭建Hadoop环境并配置相关系统变量,同时详细展示了如何通过Maven管理Hadoop依赖,并提供了WordCount任务的具体实现代码,包括Mapper、Reducer及主程序。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、在本地解压hadoop安装包,然后修改系统变量,增加HADOOP_HOME及HADOOP_USER_NAME,HADOOP_USER_NAME为实际集群运行用户

2、修改项目的Pom文件

<dependencies>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>2.9.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>2.9.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-hdfs</artifactId>
            <version>2.9.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-mapreduce-client-core</artifactId>
            <version>2.9.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-mapreduce-client-jobclient</artifactId>
            <version>2.9.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-mapreduce-client-common</artifactId>
            <version>2.9.0</version>
        </dependency>
        <dependency>
            <groupId>commons-cli</groupId>
            <artifactId>commons-cli</artifactId>
            <version>1.2</version>
        </dependency>
    </dependencies>

3、将core-site.xml、hdfs-site.xml、mapred-site.xml、yarn-site.xml、log4j.properties拷贝至resources目录

在mapred-site.xml设置

    <property>
        <name>mapreduce.app-submission.cross-platform</name>
        <value>true</value>
    </property>
    <property>
        <name>mapred.jar</name>
        <value>E:\Projects\hadoop\HadoopExercise\target\HadoopExercise-1.0-SNAPSHOT.jar</value>
    </property>

4、示例程序

Mapper

package org.zheng.demo;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;
import java.util.StringTokenizer;

public class TokenizerMapper
        extends Mapper<Object, Text, Text, IntWritable> {

    private final static IntWritable one = new IntWritable(1);

    private Text word = new Text();

    @Override
    public void map(Object key, Text value, Context context
    ) throws IOException, InterruptedException {
        StringTokenizer itr = new StringTokenizer(value.toString());
        while (itr.hasMoreTokens()) {
            word.set(itr.nextToken());
            context.write(word, one);
        }
    }
}

Reducer

package org.zheng.demo;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

public class IntSumReducer
        extends Reducer<Text, IntWritable, Text, IntWritable> {

    private IntWritable result = new IntWritable();

    @Override
    public void reduce(Text key, Iterable<IntWritable> values,
                       Context context
    ) throws IOException, InterruptedException {
        int sum = 0;
        for (IntWritable val : values) {
            sum += val.get();
        }
        result.set(sum);
        context.write(key, result);
    }
}

Main

package org.zheng.demo;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCount {

    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        //设置RM 访问位置
        Job job = Job.getInstance(conf, "word count");
        job.setJarByClass(WordCount.class);
        job.setMapperClass(TokenizerMapper.class);
        job.setCombinerClass(IntSumReducer.class);
        job.setReducerClass(IntSumReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

5、编辑运行选项,设置参数

6、运行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值