n个点m条边的带权有向图,现在要将某些边涂上颜色,使得每个点恰好在k个有颜色的环上。
每个点都在k各环中,说明每个点的 入度=出度=k。 用费用流搞,增加源汇点s ,t,将每个点拆成两个点,u跟u+n,一个代表出度,一个代表入度。从s向每个u连<k, 0>的边,从每个u+n向t连<k, 0>的边,分别代表入度跟出度的上限。 然后对于原图中的有向边<u, v, d>, 从u向v+n连一条<1, d>的边。这样求s->t的最小费用最大流。如果能漫流,答案就是最小费用。否则无解。
#include<algorithm>
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#define REP(i, n) for(int i=0; i<n; i++)
#define FF(i, a, b) for(int i=a; i<b; i++)
#define CLR(a, b) memset(a, b, sizeof(a))
#define PB push_back
#define LL long long
using namespace std;
const int maxn = 100;
const int INF = 1e9;
struct Edge
{
int from, to, cap, flow, cost;
Edge(){}
Edge(int a, int b, int c, int d, int e)
: from(a), to(b), cap(c), flow(d), cost(e){}
};
struct MCMF
{
int n, m, s, t;
vector<Edge> edges;
vector<int> G[maxn];
bool inq[maxn];
int d[maxn], p[maxn], a[maxn];
void init(int n)
{
this->n = n;
REP(i, n) G[i].clear();
edges.clear();
}
void AddEdge(int from, int to, int cap, int cost)
{
Edge e1 = Edge(from, to, cap, 0, cost);
Edge e2 = Edge(to, from, 0, 0, -cost);
edges.PB(e1); edges.PB(e2);
m = edges.size();
G[from].PB(m-2); G[to].PB(m-1);
}
bool spfa(int s, int t, int& flow, int& cost)
{
REP(i, t+1) d[i] = INF;
CLR(inq, 0);
d[s] = 0; p[s] = 0; a[s] = INF;
queue<int> q; q.push(s);
while(!q.empty())
{
int u = q.front(); q.pop();
inq[u] = false;
REP(i, G[u].size())
{
Edge& e = edges[G[u][i]];
if(e.cap > e.flow && d[e.to] > d[u] + e.cost)
{
d[e.to] = d[u] + e.cost;
p[e.to] = G[u][i];
a[e.to] = min(a[u], e.cap - e.flow);
if(!inq[e.to])
{
q.push(e.to);
inq[e.to] = true;
}
}
}
}
if(d[t] == INF) return false;
flow += a[t];
cost += d[t] * a[t];
int u = t;
while(u != s)
{
edges[p[u]].flow += a[t];
edges[p[u]^1].flow -= a[t];
u = edges[p[u]].from;
}
return true;
}
int Mincost(int s, int t, int& flow, int& cost)
{
flow = cost = 0;
while(spfa(s, t, flow, cost));
return cost;
}
}solver;
int T, n, m, k;
int main()
{
scanf("%d", &T);
while(T--)
{
scanf("%d%d%d", &n, &m, &k);
int s = 0, t = n * 2 + 1;
solver.init(t+1);
FF(i, 1, n+1)
{
solver.AddEdge(s, i, k, 0);
solver.AddEdge(i+n, t, k, 0);
}
REP(i, m)
{
int f, t, d;
scanf("%d%d%d", &f, &t, &d);
solver.AddEdge(f+1, t+1+n, 1, d);
}
int flow, cost;
cost = solver.Mincost(s, t, flow, cost);
if(flow == k*n) printf("%d\n", cost);
else puts("-1");
}
return 0;
}