Prime Ring Problem
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 34729 Accepted Submission(s): 15381
Problem Description
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.
Note: the number of first circle should always be 1.

Input
n (0 < n < 20).
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
You are to write a program that completes above process.
Print a blank line after each case.
Sample Input
6 8
Sample Output
Case 1: 1 4 3 2 5 6 1 6 5 2 3 4 Case 2: 1 2 3 8 5 6 7 4 1 2 5 8 3 4 7 6 1 4 7 6 5 8 3 2 1 6 7 4 3 8 5 2
Source
Recommend
JGShining
相对简单的一道题,dfs深搜。即在N个数的全排列,找出符合提议的素数组。
注意:一边排列 一边检查
#include<stdio.h>
#include<math.h>
int num;
bool use[20];
int CP[20];
bool isprime(int a)
{
for(int i=2;i<=sqrt(a+0.0);i++)
{
if(a%i==0)
return false;
}
return true;
}
void dfs(int n)
{
if(n==num&&isprime(1+CP[n-1]))
{
for(int i=0;i<num;i++)
{
printf(i==num-1?"%d\n":"%d ",CP[i]);
}
}
else
{
for(int i=2;i<=num;i++)
{
if(!use[i]&&isprime(i+CP[n-1]))
{
CP[n]=i;
use[i]=true;
dfs(n+1);
use[i]=false;
}
}
}
}
void init()
{
for(int i=1;i<=num;i++)
{
use[i]=false;
}
CP[0]=1;
use[1]=true;
}
int main()
{
int time=0;
while(scanf("%d",&num)!=EOF)
{
init();
printf("Case %d:\n",++time);
dfs(1);
puts("");
}
}