1、sqlalchemy
import pandas as pd
import numpy as np
import pyecharts
# import pymysql #pymysql包不导入也没事,只要环境中下载就行,下面的引擎连接就会成功
#导包
import sqlalchemy
#连接数据库引擎
engine=sqlalchemy.create_engine("mysql+pymysql://root:wxn1224@localhost:3306/pandas1020")
engine
#读取表格数据
sale=pd.read_csv('./sale.csv',encoding='gbk')
sale.head()
#将表格数据存入数据库
sale.to_sql('sale',engine)
#(‘表名’,引擎)
data=pd.read_sql_query('select * from sale',engine)
#传递数据库命令语句
#数据类型
type(data)
pd.read_sql('select * from sale',engine)
#pd.read_sql('sql语句',引擎)
#pd.read_sql_query('select * from sale',engine)
2、sqlite3
import pandas as pd
import numpy as np
import pyecharts
import sqlite3
sale = pd.read_csv('./sale.csv',encoding='gbk')
#轻量级数据库,连接在存储器上的数据库
con = sqlite3.connect(':memory:')
#也可认为是连接引擎
con
#Docstring: connect(database[, timeout, detect_types, isolation_level, check_same_thread, factory, cached_statements, uri]) Opens a connection to the SQLite database file *database*. You can use ":memory:" to open a database connection to a database that resides in RAM instead of on disk. Type: builtin_function_or_method
#存入数据库
sale.to_sql('salenew',con)
#(‘表名’)
#查询数据库信息
pd.read_sql('select * from salenew',con)
#pd.read_sql('sql语句',引擎)