The Non-Inverting Amplifier Output Resistance by Adrian S. Nastase [转载]

本文深入探讨了非反相放大器的输出电阻计算原理,通过小信号变化法揭示了其为何接近于零。文章详细分析了运算放大器在反馈配置下,输出电阻如何显著降低,并给出了数学证明。

Source Address: http://masteringelectronicsdesign.com/the-non-inverting-amplifier-output-resistance/

It is customary to consider the output resistance of the non-inverting amplifier as being zero, but why is that? An Op Amp’s own output resistance is in the range of tens of ohms. Still, when we connect the Op Amp in a feedback configuration, the output resistance decreases dramatically. Why?

To answer these questions, let’s calculate the output resistance of the non-inverting amplifier.

It is widely accepted that the output resistance of a device can be calculated using a theoretical test voltage source connected at the device output. The input, or inputs, are connected to ground. Nevertheless, instead of using this method, let’s try a different one: The small signal variation method.

Figure 1 shows the non-inverting amplifier, which drives a load, RL. This circuit has an equivalent Thevenin source as in Figure 2.

non_inverting_amplifier

Figure 1

The Non-Inverting Amplifier Output Resistance

by Adrian S. Nastase 

thevenin_source

Figure 2

From Figure 2, one can see that the output voltage, Vout, can be written as

image003(1)

If we keep VTH constant and apply small variations to Vout, by varying RL for example, the Vout variation, noted ΔVout can be written as follows:

image004(2)

Equation (2) shows that, when the load current increases, the load voltage decreases due to the output resistance. They vary in opposite direction and that is why the negative sign that appears in the Rout calculations is canceled out.

Equation (2) also tells us that we can use a small signal variation method to determine Rout. If, instead of ΔVout and ΔIout we write the small signal notation vout and iout, the output resistance becomes

image005(3)

Let’s apply this method to the non-inverting amplifier.

non_inverting_amplifier

Figure 3

An ideal Op Amp can be represented as a dependent source as in Figure 3. The output of the source has a resistor in series, Ro, which is the Op Amp’s own output resistance. The dependent source is Ao vd, where Ao is the Op Amp open-loop gain and vd is the differential input voltage. The input differential resistance, between the Op Amp inputs, is considered high, so I removed it for simplicity. The same with the common mode input resistances, between the non-inverting input and ground and the inverting input and ground. The non-inverting input is connected to ground, because a fixed value voltage source does not bring any change from a small-signal variation point of view. Thus, we are in line with the general rule that the output resistance of a circuit is calculated with the circuit inputs connected to ground.

Inspecting the loop made by Ao vd, Ro, and RL, vout can be expressed as in the following equation.

image002(4)

where iout is the small variation load current and if is the small variation feedback current.

The differential voltage vd appears across R1, but with negative sign, so if is

image008(5)

And vout becomes

image009(6)

At the same time vd depends on vout.

image010(7)

After replacing vd in equation (6), the resulting mathematical expression depends on vout and iout as in equation (8).

image011(8)

Based on (3) and (8) Rout is

iinverting_amplifier_output_resistance1(9)

Ao is large, about 100000 or 100 dB. Therefore, the second term of the denominator is predominant.

inverting_amplifier_output_resistance2(10)

This proves that the output resistance of the non-inverting amplifier is

inverting_amplifier_output_resistance3(11)

where ACL=1+R2/R1 and it is the closed-loop gain of the non-inverting amplifier. For a proof of the closed loop gain read this article,MasteringElectronicsDesign.com:How to Derive the Non-Inverting Amplifier Transfer Function.

As equation (11) shows, the output resistance of the non-inverting amplifier is several orders of magnitude smaller than that of the Op Amp, because Ro is divided by the operational amplifier open loop gain. Therefore, the non-inverting amplifier output resistance can be considered zero.

转载于:https://www.cnblogs.com/blue-box/p/5713386.html

标题基于Python的汽车之家网站舆情分析系统研究AI更换标题第1章引言阐述汽车之家网站舆情分析的研究背景、意义、国内外研究现状、论文方法及创新点。1.1研究背景与意义说明汽车之家网站舆情分析对汽车行业及消费者的重要性。1.2国内外研究现状概述国内外在汽车舆情分析领域的研究进展与成果。1.3论文方法及创新点介绍本文采用的研究方法及相较于前人的创新之处。第2章相关理论总结和评述舆情分析、Python编程及网络爬虫相关理论。2.1舆情分析理论阐述舆情分析的基本概念、流程及关键技术。2.2Python编程基础介绍Python语言特点及其在数据分析中的应用。2.3网络爬虫技术说明网络爬虫的原理及在舆情数据收集中的应用。第3章系统设计详细描述基于Python的汽车之家网站舆情分析系统的设计方案。3.1系统架构设计给出系统的整体架构,包括数据收集、处理、分析及展示模块。3.2数据收集模块设计介绍如何利用网络爬虫技术收集汽车之家网站的舆情数据。3.3数据处理与分析模块设计阐述数据处理流程及舆情分析算法的选择与实现。第4章系统实现与测试介绍系统的实现过程及测试方法,确保系统稳定可靠。4.1系统实现环境列出系统实现所需的软件、硬件环境及开发工具。4.2系统实现过程详细描述系统各模块的实现步骤及代码实现细节。4.3系统测试方法介绍系统测试的方法、测试用例及测试结果分析。第5章研究结果与分析呈现系统运行结果,分析舆情数据,提出见解。5.1舆情数据可视化展示通过图表等形式展示舆情数据的分布、趋势等特征。5.2舆情分析结果解读对舆情分析结果进行解读,提出对汽车行业的见解。5.3对比方法分析将本系统与其他舆情分析系统进行对比,分析优劣。第6章结论与展望总结研究成果,提出未来研究方向。6.1研究结论概括本文的主要研究成果及对汽车之家网站舆情分析的贡献。6.2展望指出系统存在的不足及未来改进方向,展望舆情
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值