A - 三角形
map存一下每个数出现了多少次,再遍历map
#include <bits/stdc++.h>
using namespace std;
#define int long long
using i64 = long long;
typedef pair<int, int> PII;
typedef pair<int, char> PIC;
typedef pair<double, double> PDD;
typedef pair<int, PII> PIII;
typedef pair<int, pair<int, bool>> PIIB;
const int N = 1e5 + 10;
const int maxn = 1e6 + 10;
const int mod = 998244353;
const int mod1 = 954169327;
const int mod2 = 906097321;
const int INF = 0x3f3f3f3f3f3f3f3f;
void solve()
{
int n;
cin >> n;
map<int, int> mp;
for (int i = 0; i < n; i ++ )
{
int x; cin >> x;
mp[x] ++ ;
}
for (auto t : mp)
{
if (t.second >= 3)
{
cout << "YES\n";
return;
}
}
cout << "NO\n";
return;
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0), cout.tie(0);
int t = 1;
// cin >> t;
while (t--)
{
solve();
}
}
B - 好数组
数组没有 0 就是好数组
#include <bits/stdc++.h>
using namespace std;
#define int long long
using i64 = long long;
typedef pair<int, int> PII;
typedef pair<int, char> PIC;
typedef pair<double, double> PDD;
typedef pair<int, PII> PIII;
typedef pair<int, pair<int, bool>> PIIB;
const int N = 1e5 + 10;
const int maxn = 1e6 + 10;
const int mod = 998244353;
const int mod1 = 954169327;
const int mod2 = 906097321;
const int INF = 0x3f3f3f3f3f3f3f3f;
void solve()
{
int n;
cin >> n;
vector<int> a(n + 1);
for (int i = 1; i <= n; i ++ ) cin >> a[i];
for (int i = 1; i <= n; i ++ )
{
if (a[i] == 0)
{
cout << "NO\n";
return;
}
}
cout << "YES\n";
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0), cout.tie(0);
int t = 1;
// cin >> t;
while (t--)
{
solve();
}
}
C - 前缀平方和序列
对 x 开方,得到的就是能存在数组里的所有数的个数,我们要取 n 个,也就是 C(sqrt(x), n)
#include <bits/stdc++.h>
using namespace std;
#define int long long
using i64 = long long;
typedef pair<int, int> PII;
typedef pair<int, char> PIC;
typedef pair<double, double> PDD;
typedef pair<int, PII> PIII;
typedef pair<int, pair<int, bool>> PIIB;
const int N = 1e5 + 10;
const int maxn = 1e6 + 10;
const int mod = 1e9 + 7;
const int mod1 = 954169327;
const int mod2 = 906097321;
const int INF = 0x3f3f3f3f3f3f3f3f;
int Jc[maxn + 1];
void calJc() //求 maxn 以内的数的阶乘 不知道开多少就1e6吧爆不了
{
Jc[0] = Jc[1] = 1;
for(int i = 2; i < maxn; i++) Jc[i] = Jc[i - 1] * i % mod;
}
int pow(int a, int n, int p) // 快速幂取模
{
int ans = 1;
while (n)
{
if (n & 1) ans = ans * a % p;
a = a * a % p;
n >>= 1;
}
return ans;
}
int niYuan(int a, int b) //费马小定理求逆元
{
return pow(a, b - 2, b);
}
int C(int a, int b) // 组合数
{
if(a < b) return 0;
return Jc[a] * niYuan(Jc[b], mod) % mod * niYuan(Jc[a - b], mod) % mod;
}
void solve()
{
calJc();
int n, x;
cin >> n >> x;
int cnt = sqrt(x);
int ans = C(cnt, n);
cout << ans << '\n';
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0), cout.tie(0);
int t = 1;
// cin >> t;
while (t--)
{
solve();
}
}
D - 走一个大整数迷宫
首先需要注意到 c 的值和 b 一点关系都没有,因为 b 不可能对 (p - 1) 有任何贡献
明确这一点之后只需要 bfs 就可以了,注意需要判断 st[x][y][k]
不重复,(x, y)
就是点坐标,k
就是到达该点的余数
#include <bits/stdc++.h>
using namespace std;
#define int long long
using i64 = long long;
typedef pair<int, int> PII;
typedef pair<int, char> PIC;
typedef pair<double, double> PDD;
typedef pair<int, PII> PIII;
typedef pair<int, pair<int, bool>> PIIB;
const int N = 1e5 + 10;
const int maxn = 1e6 + 10;
const int mod = 1e9 + 7;
const int mod1 = 954169327;
const int mod2 = 906097321;
const int INF = 0x3f3f3f3f3f3f3f3f;
int dx[4] = {0, 0, 1, -1}, dy[4] = {1, -1, 0, 0};
struct node {
int dist, res, x, y;
};
void solve()
{
int n, m, p;
cin >> n >> m >> p;
vector<vector<int>> a(n + 1, vector<int>(m + 1)), b(n + 1, vector<int>(m + 1));
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= m; j ++ )
cin >> a[i][j];
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= m; j ++ )
cin >> b[i][j];
int ans = INF;
queue<struct node> q;
q.push({0, a[1][1] % (p - 1), 1, 1});
vector<vector<vector<bool>>> st(n + 1, vector<vector<bool>>(m + 1, vector<bool>(p + 1)));
while (q.size())
{
auto t = q.front();
q.pop();
if (st[t.x][t.y][t.res]) continue;
st[t.x][t.y][t.res] = true;
if (t.x == n && t.y == m && t.res % (p - 1) == 0)
{
cout << t.dist << '\n';
return;
}
if (t.dist >= 1e6)
{
cout << -1 << '\n';
return;
}
for (int i = 0; i < 4; i ++ )
{
int nx = t.x + dx[i], ny = t.y + dy[i];
if (nx <= 0 || nx > n || ny <= 0 || ny > m) continue;
q.push({t.dist + 1, (t.res + a[nx][ny]) % (p - 1), nx, ny});
}
}
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0), cout.tie(0);
int t = 1;
// cin >> t;
while (t--)
{
solve();
}
}
E - 前缀和前缀最大值
a 的前缀最大值数量最多的情况就是把正数全都排在前面的时候,此时数量为 正数个数+1
,加的 1 代表最前面的前缀和 0
数量最少的情况就是把负数全都排在正数前面,且正数从小到大排列,这种情况怎么计算呢,因为 b 的值域最大只有100,所以用 cnt_pos[i][j]
表示前 i 个元素中 j 出现的次数,之后计算最多需要多少个正数可以把负数都抵消即可
答案就是最大值-最小值+1
#include <bits/stdc++.h>
using namespace std;
#define int long long
using i64 = long long;
typedef pair<int, int> PII;
typedef pair<int, char> PIC;
typedef pair<double, double> PDD;
typedef pair<int, PII> PIII;
typedef pair<int, pair<int, bool>> PIIB;
const int N = 10;
const int maxn = 1e6 + 10;
const int mod = 998244353;
const int mod1 = 954169327;
const int mod2 = 906097321;
const int INF = 0x3f3f3f3f3f3f3f3f;
void solve()
{
int n;
cin >> n;
vector<int> a(n + 1), pre_neg(n + 1);
vector<vector<int>> cnt_pos(n + 1, vector<int>(110));
for (int i = 1; i <= n; i ++ )
{
cin >> a[i];
pre_neg[i] = pre_neg[i - 1] - min(a[i], (i64)0);
for (int j = 1; j <= 100; j ++ )
{
cnt_pos[i][j] = cnt_pos[i - 1][j] + (a[i] == j);
}
}
int q;
cin >> q;
while (q -- )
{
int l, r;
cin >> l >> r;
int cnt_plus = 0; // 正数个数
for (int i = 1; i <= 100; i ++ ) cnt_plus += cnt_pos[r][i] - cnt_pos[l - 1][i];
int sum_tmp = 0; // 当前正数之和
int cnt_need = 0; // 需要多少正数和负数抵消
for (int i = 1; i <= 100; i ++ )
{
int cnt = cnt_pos[r][i] - cnt_pos[l - 1][i];
if (sum_tmp + i * cnt >= (pre_neg[r] - pre_neg[l - 1]))
{
cnt_need += (pre_neg[r] - pre_neg[l - 1] - sum_tmp) / i;
break;
}
else
{
cnt_need += cnt;
sum_tmp += cnt * i;
}
}
cout << cnt_plus + 1 - (cnt_plus - cnt_need + 1) + 1 << '\n';
}
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0), cout.tie(0);
int t = 1;
// cin >> t;
while (t--)
{
solve();
}
}