3.2 TensorFlow数据模型 ---- 张量

  在TensorFlow程序中,所有的数据都通过张量的形式来表示。从功能的角度上看,张量可以简单理解为多维数组。但张量在TensorFlow中的实现并不是直接采用的数组的形式,它只是对TensorFlow中运算结果的引用。在张量中并没有真正的保存数字,它保存的是如何得到这些数字的计算过程。

  一个张量主要包含了三个属性:名字,维度和类型。其中张量的属性名字不仅使一个张量的唯一标识符,它同样给出了这个张量是如何计算出来的。张量的第二个属性张量的维度,这个属性描述了一个张量的维度信息。张量的第三个属性是类型,每一个张量都会有一个唯一的类型。

张量的使用

  第一类用途是对中间计算结果的引用。当一个计算包含很多中间结果时,使用张量可以提高代码的可读性。

#使用张量计算中间结果
a = tf.constant([1.0, 2.0], name = "a")
b = tf.constant([2.0, 3.0], name = "b")

result = a + b

#直接计算向量的和,可读性较差
result = tf.constant([1.0, 2.0], name = "a") + tf.constant([2.0, 3.0], name = "b")

 

  

 

转载于:https://www.cnblogs.com/CZT-TS/p/11235061.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值