最近一直在做订单类的项目,使用了事务。我们的数据库选用的是MySql,存储引擎选用innoDB,innoDB对事务有着良好的支持。这篇文章我们一起来扒一扒事务相关的知识。
为什么要有事务?
事务广泛的运用于订单系统、银行系统等多种场景。如果有以下一个场景:A用户和B用户是银行的储户。现在A要给B转账500元。那么需要做以下几件事:
1. 检查A的账户余额>500元;
2. A账户扣除500元;
3. B账户增加500元;
正常的流程走下来,A账户扣了500,B账户加了500,皆大欢喜。那如果A账户扣了钱之后,系统出故障了呢?A白白损失了500,而B也没有收到本该属于他的500。以上的案例中,隐藏着一个前提条件:A扣钱和B加钱,要么同时成功,要么同时失败。事务的需求就在于此。
事务是什么?
与其给事务定义,不如说一说事务的特性。众所周知,事务需要满足ACID四个特性。
1. A(atomicity) 原子性。一个事务的执行被视为一个不可分割的最小单元。事务里面的操作,要么全部成功执行,要么全部失败回滚,不可以只执行其中的一部分。
2. C(consistency) 一致性。一个事务的执行不应该破坏数据库的完整性约束。如果上述例子中第2个操作执行后系统崩溃,保证A和B的金钱总计是不会变的。
3. I(isolation) 隔离性。通常来说,事务之间的行为不应该互相影响。然而实际情况中,事务相互影响的程度受到隔离级别的影响。文章后面会详述。
4. D(durability) 持久性。事务提交之后,需要将提交的事务持久化到磁盘。即使系统崩溃,提交的数据也不应该丢失。
事务的四种隔离级别
前文中提到,事务的隔离性受到隔离级别的影响。那么事务的隔离级别是什么呢?事务的隔离级别可以认为是事务的"自私"程度,它定义了事务之间的可见性。隔离级别分为以下几种:
1.READ UNCOMMITTED(未提交读)。在RU的隔离级别下,事务A对数据做的修改,即使没有提交,对于事务B来说也是可见的,这种问题叫脏读。这是隔离程度较低的一种隔离级别,在实际运用中会引起很多问题,因此一般不常用。
2.READ COMMITTED(提交读)。在RC的隔离级别下,不会出现脏读的问题。事务A对数据做的修改,提交之后会对事务B可见,举例,事务B开启时读到数据1,接下来事务A开启,把这个数据改成2,提交,B再次读取这个数据,会读到最新的数据2。在RC的隔离级别下,会出现不可重复读的问题。这个隔离级别是许多数据库的默认隔离级别。
3.REPEATABLE READ(可重复读)。在RR的隔离级别下,不会出现不可重复读的问题。事务A对数据做的修改,提交之后,对于先于事务A开启的事务是不可见的。举例,事务B开启时读到数据1,接下来事务A开启,把这个数据改成2,提交,B再次读取这个数据,仍然只能读到1。在RR的隔离级别下,会出现幻读的问题。幻读的意思是,当某个事务在读取某个范围内的值的时候,另外一个事务在这个范围内插入了新记录,那么之前的事务再次读取这个范围的值,会读取到新插入的数据。Mysql默认的隔离级别是RR,然而mysql的innoDB引擎间隙锁成功解决了幻读的问题。
4.SERIALIZABLE(可串行化)。可串行化是最高的隔离级别。这种隔离级别强制要求所有事物串行执行,在这种隔离级别下,读取的每行数据都加锁,会导致大量的锁征用问题,性能最差。
为了帮助理解四种隔离级别,这里举个例子。如图1,事务A和事务B先后开启,并对数据1进行多次更新。四个小人在不同的时刻开启事务,可能看到数据1的哪些值呢?
图1
第一个小人,可能读到1-20之间的任何一个。因为未提交读的隔离级别下,其他事务对数据的修改也是对当前事务可见的。第二个小人可能读到1,10和20,他只能读到其他事务已经提交了的数据。第三个小人读到的数据去决于自身事务开启的时间点。在事务开启时,读到的是多少,那么在事务提交之前读到的值就是多少。第四个小人,只有在A end 到B start之间开启,才有可能读到数据,而在事务A和事务B执行的期间是读不到数据的。因为第四小人读数据是需要加锁的,事务A和B执行期间,会占用数据的写锁,导致第四个小人等待锁。
图2罗列了不同隔离级别所面对的问题。
图2
很显然,隔离级别越高,它所带来的资源消耗也就越大(锁),因此它的并发性能越低。准确的说,在可串行化的隔离级别下,是没有并发的。
图3
MySql中的事务
事务的实现是基于数据库的存储引擎。不同的存储引擎对事务的支持程度不一样。mysql中支持事务的存储引擎有innoDB和NDB。innoDB是mysql默认的存储引擎,默认的隔离级别是RR,并且在RR的隔离级别下更进一步,通过多版本并发控制(MVCC,Multiversion Concurrency Control )解决不可重复读问题,加上间隙锁(也就是并发控制)解决幻读问题。因此innoDB的RR隔离级别其实实现了串行化级别的效果,而且保留了比较好的并发性能。
事务的隔离性是通过锁实现,而事务的原子性、一致性和持久性则是通过事务日志实现。说到事务日志,不得不说的就是redo和undo。
1.redo log
在innoDB的存储引擎中,事务日志通过重做(redo)日志和innoDB存储引擎的日志缓冲(InnoDB Log Buffer)实现。事务开启时,事务中的操作,都会先写入存储引擎的日志缓冲中,在事务提交之前,这些缓冲的日志都需要提前刷新到磁盘上持久化,这就是DBA们口中常说的“日志先行”(Write-Ahead Logging)。当事务提交之后,在Buffer Pool中映射的数据文件才会慢慢刷新到磁盘。此时如果数据库崩溃或者宕机,那么当系统重启进行恢复时,就可以根据redo log中记录的日志,把数据库恢复到崩溃前的一个状态。未完成的事务,可以继续提交,也可以选择回滚,这基于恢复的策略而定。
在系统启动的时候,就已经为redo log分配了一块连续的存储空间,以顺序追加的方式记录Redo Log,通过顺序IO来改善性能。所有的事务共享redo log的存储空间,它们的Redo Log按语句的执行顺序,依次交替的记录在一起。如下一个简单示例:
记录1:<trx1, insert...>
记录2:<trx2, delete...>
记录3:<trx3, update...>
记录4:<trx1, update...>
记录5:<trx3, insert...>
2.undo log
undo log主要为事务的回滚服务。在事务执行的过程中,除了记录redo log,还会记录一定量的undo log。undo log记录了数据在每个操作前的状态,如果事务执行过程中需要回滚,就可以根据undo log进行回滚操作。单个事务的回滚,只会回滚当前事务做的操作,并不会影响到其他的事务做的操作。
以下是undo+redo事务的简化过程
假设有2个数值,分别为A和B,值为1,2
1. start transaction;
2. 记录 A=1 到undo log;
3. update A = 3;
4. 记录 A=3 到redo log;
5. 记录 B=2 到undo log;
6. update B = 4;
7. 记录B = 4 到redo log;
8. 将redo log刷新到磁盘
9. commit
在1-8的任意一步系统宕机,事务未提交,该事务就不会对磁盘上的数据做任何影响。如果在8-9之间宕机,恢复之后可以选择回滚,也可以选择继续完成事务提交,因为此时redo log已经持久化。若在9之后系统宕机,内存映射中变更的数据还来不及刷回磁盘,那么系统恢复之后,可以根据redo log把数据刷回磁盘。
所以,redo log其实保障的是事务的持久性和一致性,而undo log则保障了事务的原子性。
LSN
- 重做日志写入的总量
- checkpoint的位置
- 页的版本
6.恢复过程

提交过程
MySQL是通过WAL方式,来保证数据库事务的一致性和持久性,即ACID特性中的C(consistent)和D(durability)。
WAL(Write-Ahead Logging)是一种实现事务日志的标准方法,具体而言就是:
1、修改记录前,一定要先写日志;
2、事务提交过程中,一定要保证日志先落盘,才能算事务提交完成。
通过WAL方式,在保证事务特性的情况下,可以提高数据库的性能。
从上述流程可以看出,提交过程中,主要做了4件事情,
1、清理undo段信息,对于innodb存储引擎的更新操作来说,undo段需要purge,这里的purge主要职能是,真正删除物理记录。在执行delete或update操作时,实际旧记录没有真正删除,只是在记录上打了一个标记,而是在事务提交后,purge线程真正删除,释放物理页空间。因此,提交过程中会将undo信息加入purge列表,供purge线程处理。
2、释放锁资源,mysql通过锁互斥机制保证不同事务不同时操作一条记录,事务执行后才会真正释放所有锁资源,并唤醒等待其锁资源的其他事务;
3、刷redo日志,前面我们说到,mysql实现事务一致性和持久性的机制。通过redo日志落盘操作,保证了即使修改的数据页没有即使更新到磁盘,只要日志是完成了,就能保证数据库的完整性和一致性;
4、清理保存点列表,每个语句实际都会有一个savepoint(保存点),保存点作用是为了可以回滚到事务的任何一个语句执行前的状态,由于事务都已经提交了,所以保存点列表可以被清理了。
关于mysql的锁机制,purge原理,redo日志,undo段等内容,其实都是数据库的核心内容。
MySQL 本身不提供事务支持,而是开放了存储引擎接口,由具体的存储引擎来实现,具体来说支持 MySQL 事务的存储引擎就是 InnoDB。
存储引擎实现事务的通用方式是基于 redo log 和 undo log。
简单来说,redo log 记录事务修改后的数据, undo log 记录事务前的原始数据。
所以当一个事务执行时实际发生过程简化描述如下:
- 先记录 undo/redo log,确保日志刷到磁盘上持久存储。
- 更新数据记录,缓存操作并异步刷盘。
- 提交事务,在 redo log 中写入 commit 记录。
在 MySQL 执行事务过程中如果因故障中断,可以通过 redo log 来重做事务或通过 undo log 来回滚,确保了数据的一致性。
这些都是由事务性存储引擎来完成的,但 binlog 不在事务存储引擎范围内,而是由 MySQL Server 来记录的。
那么就必须保证 binlog 数据和 redo log 之间的一致性,所以开启了 binlog 后实际的事务执行就多了一步,如下:
- 先记录 undo/redo log,确保日志刷到磁盘上持久存储。
- 更新数据记录,缓存操作并异步刷盘。
- 将事务日志持久化到 binlog。
- 提交事务,在 redo log 中写入commit记录。
这样的话,只要 binlog 没写成功,整个事务是需要回滚的,而 binlog 写成功后即使 MySQL Crash 了都可以恢复事务并完成提交。
要做到这点,就需要把 binlog 和事务关联起来,而只有保证了 binlog 和事务数据的一致性,才能保证主从数据的一致性。
所以 binlog 的写入过程不得不嵌入到纯粹的事务存储引擎执行过程中,并以内部分布式事务(xa 事务)的方式完成两阶段提交。
binlog日志和redo log日志的区别??
binlog在mysql层,而redo log 在存储引擎层。
binlog日志文件是为了解决MySQL主从复制功能而引入的一份新日志文件,它包含了引发数据变更的事件日志集合。
从库请求主库发送 binlog 并通过日志事件还原数据写入从库,所以从库的数据来源为 binlog。
这样 MySQL 主库只需做到 binlog 与本地数据一致就可以保证主从库数据一致(暂且忽略网络传输引发的主从不一致)。
分布式事务
分布式事务的实现方式有很多,既可以采用innoDB提供的原生的事务支持,也可以采用消息队列来实现分布式事务的最终一致性。这里我们主要聊一下innoDB对分布式事务的支持。
如图,mysql的分布式事务模型。模型中分三块:应用程序(AP)、资源管理器(RM)、事务管理器(TM)。
应用程序定义了事务的边界,指定需要做哪些事务;
资源管理器提供了访问事务的方法,通常一个数据库就是一个资源管理器;
事务管理器协调参与了全局事务中的各个事务。
分布式事务采用两段式提交(two-phase commit)的方式。第一阶段所有的事务节点开始准备,告诉事务管理器ready。第二阶段事务管理器告诉每个节点是commit还是rollback。如果有一个节点失败,就需要全局的节点全部rollback,以此保障事务的原子性。
总结
什么时候需要使用事务呢?我想,只要业务中需要满足ACID的场景,都需要事务的支持。尤其在订单系统、银行系统中,事务是不可或缺的。这篇文章主要介绍了事务的特性,以及mysql innoDB对事务的支持。事务相关的知识远不止文中所说,本文仅作抛砖引玉,不足之处还望读者多多见谅。
参考文献:
《高性能mysql第三版》
《mysql技术内幕 innoDB存储引擎》
参考转载:https://www.cnblogs.com/maypattis/p/5628355.html
参考转载:https://www.cnblogs.com/exceptioneye/p/5451960.html