QQ Group: 428014259
Tencent E-mail:403568338@qq.com
http://blog.youkuaiyun.com/dgyuanshaofeng/article/details/79672365
1 GN动机
- BN,沿着批(batch)轴进行归一化,产生了问题:当批的大小越小时,BN的误差越大,造成不准确的批统计信息估计。图1比较了BN和GN在不同批大小下的误差率。
- 经典特征SIFT(Scale Invariant Feature Transform),HOG(Histogram of Oriented Gradient),GIST(?),VLAD(Vector of Locally Aggregated Descriptors)和FV(Fisher Vector),是逐组特征,因此应该使用逐组归一化。受传统图像分析的启发。

2 GN操作
如图2所示,GN在通道(channel)轴进行分组,然后在组内进行归一化。

3 GN执行
TensorFlow的实现(原文)
def GroupNorm(x, gamma, beta, G, eps=1e-5):
#x: input features with shape [ N, C, H, W]
#gamma, beta: scale and offset, with shape [1, C, 1, 1]
#G: number of groups for GN
N, C, H, W = x.shape
x = tf.reshape(x,