/*
* Copyright (c) 2016 SEBASTIEN DERONNE
*
* SPDX-License-Identifier: GPL-2.0-only
*
* Author: Sebastien Deronne <sebastien.deronne@gmail.com>
*/
#include "ns3/attribute-container.h"
#include "ns3/boolean.h"
#include "ns3/command-line.h"
#include "ns3/config.h"
#include "ns3/double.h"
#include "ns3/enum.h"
#include "ns3/he-phy.h"
#include "ns3/internet-stack-helper.h"
#include "ns3/ipv4-address-helper.h"
#include "ns3/ipv4-global-routing-helper.h"
#include "ns3/log.h"
#include "ns3/mobility-helper.h"
#include "ns3/multi-model-spectrum-channel.h"
#include "ns3/on-off-helper.h"
#include "ns3/packet-sink-helper.h"
#include "ns3/packet-sink.h"
#include "ns3/spectrum-wifi-helper.h"
#include "ns3/ssid.h"
#include "ns3/string.h"
#include "ns3/udp-client-server-helper.h"
#include "ns3/udp-server.h"
#include "ns3/uinteger.h"
#include "ns3/wifi-acknowledgment.h"
#include "ns3/yans-wifi-channel.h"
#include "ns3/yans-wifi-helper.h"
#include <algorithm>
#include <functional>
// This is a simple example in order to show how to configure an IEEE 802.11ax Wi-Fi network.
//
// It outputs the UDP or TCP goodput for every HE MCS value, which depends on the MCS value (0 to
// 11), the channel width (20, 40, 80 or 160 MHz) and the guard interval (800ns, 1600ns or 3200ns).
// The PHY bitrate is constant over all the simulation run. The user can also specify the distance
// between the access point and the station: the larger the distance the smaller the goodput.
//
// The simulation assumes a configurable number of stations in an infrastructure network:
//
// STA AP
// * *
// | |
// n1 n2
//
// Packets in this simulation belong to BestEffort Access Class (AC_BE).
// By selecting an acknowledgment sequence for DL MU PPDUs, it is possible to aggregate a
// Round Robin scheduler to the AP, so that DL MU PPDUs are sent by the AP via DL OFDMA.
using namespace ns3;
NS_LOG_COMPONENT_DEFINE("he-wifi-network");
int
main(int argc, char* argv[])
{
bool udp{true};
bool downlink{true};
bool useRts{false};
bool use80Plus80{false};
bool useExtendedBlockAck{false};
Time simulationTime{"10s"};
meter_u distance{1.0};
double frequency{5}; // whether 2.4, 5 or 6 GHz
std::size_t nStations{1};
std::string dlAckSeqType{"NO-OFDMA"};
bool enableUlOfdma{false};
bool enableBsrp{false};
std::string mcsStr;
std::vector<uint64_t> mcsValues;
int channelWidth{-1}; // in MHz, -1 indicates an unset value
int guardInterval{-1}; // in nanoseconds, -1 indicates an unset value
uint32_t payloadSize =
700; // must fit in the max TX duration when transmitting at MCS 0 over an RU of 26 tones
std::string phyModel{"Yans"};
double minExpectedThroughput{0.0};
double maxExpectedThroughput{0.0};
Time accessReqInterval{0};
CommandLine cmd(__FILE__);
cmd.AddValue("frequency",
"Whether working in the 2.4, 5 or 6 GHz band (other values gets rejected)",
frequency);
cmd.AddValue("distance",
"Distance in meters between the station and the access point",
distance);
cmd.AddValue("simulationTime", "Simulation time", simulationTime);
cmd.AddValue("udp", "UDP if set to 1, TCP otherwise", udp);
cmd.AddValue("downlink",
"Generate downlink flows if set to 1, uplink flows otherwise",
downlink);
cmd.AddValue("useRts", "Enable/disable RTS/CTS", useRts);
cmd.AddValue("use80Plus80", "Enable/disable use of 80+80 MHz", use80Plus80);
cmd.AddValue("useExtendedBlockAck", "Enable/disable use of extended BACK", useExtendedBlockAck);
cmd.AddValue("nStations", "Number of non-AP HE stations", nStations);
cmd.AddValue("dlAckType",
"Ack sequence type for DL OFDMA (NO-OFDMA, ACK-SU-FORMAT, MU-BAR, AGGR-MU-BAR)",
dlAckSeqType);
cmd.AddValue("enableUlOfdma",
"Enable UL OFDMA (useful if DL OFDMA is enabled and TCP is used)",
enableUlOfdma);
cmd.AddValue("enableBsrp",
"Enable BSRP (useful if DL and UL OFDMA are enabled and TCP is used)",
enableBsrp);
cmd.AddValue(
"muSchedAccessReqInterval",
"Duration of the interval between two requests for channel access made by the MU scheduler",
accessReqInterval);
cmd.AddValue(
"mcs",
"list of comma separated MCS values to test; if unset, all MCS values (0-11) are tested",
mcsStr);
cmd.AddValue("channelWidth",
"if set, limit testing to a specific channel width expressed in MHz (20, 40, 80 "
"or 160 MHz)",
channelWidth);
cmd.AddValue("guardInterval",
"if set, limit testing to a specific guard interval duration expressed in "
"nanoseconds (800, 1600 or 3200 ns)",
guardInterval);
cmd.AddValue("payloadSize", "The application payload size in bytes", payloadSize);
cmd.AddValue("phyModel",
"PHY model to use when OFDMA is disabled (Yans or Spectrum). If 80+80 MHz or "
"OFDMA is enabled "
"then Spectrum is automatically selected",
phyModel);
cmd.AddValue("minExpectedThroughput",
"if set, simulation fails if the lowest throughput is below this value",
minExpectedThroughput);
cmd.AddValue("maxExpectedThroughput",
"if set, simulation fails if the highest throughput is above this value",
maxExpectedThroughput);
cmd.Parse(argc, argv);
double prevThroughput[12] = {0};
std::cout << "MCS value"
<< "\t\t"
<< "Channel width"
<< "\t\t"
<< "GI"
<< "\t\t\t"
<< "Throughput" << '\n';
uint8_t minMcs = 0;
uint8_t maxMcs = 11;
if (mcsStr.empty())
{
for (uint8_t mcs = minMcs; mcs <= maxMcs; ++mcs)
{
mcsValues.push_back(mcs);
}
}
else
{
AttributeContainerValue<UintegerValue, ',', std::vector> attr;
auto checker = DynamicCast<AttributeContainerChecker>(MakeAttributeContainerChecker(attr));
checker->SetItemChecker(MakeUintegerChecker<uint8_t>());
attr.DeserializeFromString(mcsStr, checker);
mcsValues = attr.Get();
std::sort(mcsValues.begin(), mcsValues.end());
}
int minChannelWidth = 20;
int maxChannelWidth = frequency == 2.4 ? 40 : 160;
if ((channelWidth != -1) &&
((channelWidth < minChannelWidth) || (channelWidth > maxChannelWidth)))
{
NS_FATAL_ERROR("Invalid channel width: " << channelWidth << " MHz");
}
if (channelWidth >= minChannelWidth && channelWidth <= maxChannelWidth)
{
minChannelWidth = channelWidth;
maxChannelWidth = channelWidth;
}
int minGi = enableUlOfdma ? 1600 : 800;
int maxGi = 3200;
if (guardInterval >= minGi && guardInterval <= maxGi)
{
minGi = guardInterval;
maxGi = guardInterval;
}
for (const auto mcs : mcsValues)
{
uint8_t index = 0;
double previous = 0;
for (int width = minChannelWidth; width <= maxChannelWidth; width *= 2) // MHz
{
const auto is80Plus80 = (use80Plus80 && (width == 160));
const std::string widthStr = is80Plus80 ? "80+80" : std::to_string(width);
const auto segmentWidthStr = is80Plus80 ? "80" : widthStr;
for (int gi = maxGi; gi >= minGi; gi /= 2) // Nanoseconds
{
if (!udp)
{
Config::SetDefault("ns3::TcpSocket::SegmentSize", UintegerValue(payloadSize));
}
NodeContainer wifiStaNodes;
wifiStaNodes.Create(nStations);
NodeContainer wifiApNode;
wifiApNode.Create(1);
NetDeviceContainer apDevice;
NetDeviceContainer staDevices;
WifiMacHelper mac;
WifiHelper wifi;
std::string channelStr("{0, " + segmentWidthStr + ", ");
StringValue ctrlRate;
auto nonHtRefRateMbps = HePhy::GetNonHtReferenceRate(mcs) / 1e6;
std::ostringstream ossDataMode;
ossDataMode << "HeMcs" << mcs;
if (frequency == 6)
{
ctrlRate = StringValue(ossDataMode.str());
channelStr += "BAND_6GHZ, 0}";
Config::SetDefault("ns3::LogDistancePropagationLossModel::ReferenceLoss",
DoubleValue(48));
}
else if (frequency == 5)
{
std::ostringstream ossControlMode;
ossControlMode << "OfdmRate" << nonHtRefRateMbps << "Mbps";
ctrlRate = StringValue(ossControlMode.str());
channelStr += "BAND_5GHZ, 0}";
}
else if (frequency == 2.4)
{
std::ostringstream ossControlMode;
ossControlMode << "ErpOfdmRate" << nonHtRefRateMbps << "Mbps";
ctrlRate = StringValue(ossControlMode.str());
channelStr += "BAND_2_4GHZ, 0}";
Config::SetDefault("ns3::LogDistancePropagationLossModel::ReferenceLoss",
DoubleValue(40));
}
else
{
NS_FATAL_ERROR("Wrong frequency value!");
}
if (is80Plus80)
{
channelStr += std::string(";") + channelStr;
}
wifi.SetStandard(WIFI_STANDARD_80211ax);
wifi.SetRemoteStationManager("ns3::ConstantRateWifiManager",
"DataMode",
StringValue(ossDataMode.str()),
"ControlMode",
ctrlRate);
// Set guard interval
wifi.ConfigHeOptions("GuardInterval", TimeValue(NanoSeconds(gi)));
Ssid ssid = Ssid("ns3-80211ax");
auto channel = YansWifiChannelHelper::Default();
YansWifiPhyHelper phy;
phy.SetPcapDataLinkType(WifiPhyHelper::DLT_IEEE802_11_RADIO);
phy.SetChannel(channel.Create());
mac.SetType("ns3::StaWifiMac",
"Ssid",
SsidValue(ssid),
"MpduBufferSize",
UintegerValue(useExtendedBlockAck ? 256 : 64));
phy.Set("ChannelSettings", StringValue(channelStr));
staDevices = wifi.Install(phy, mac, wifiStaNodes);
mac.SetType("ns3::ApWifiMac",
"EnableBeaconJitter",
BooleanValue(false),
"Ssid",
SsidValue(ssid));
apDevice = wifi.Install(phy, mac, wifiApNode);
int64_t streamNumber = 150;
streamNumber += WifiHelper::AssignStreams(apDevice, streamNumber);
streamNumber += WifiHelper::AssignStreams(staDevices, streamNumber);
// mobility.
MobilityHelper mobility;
Ptr<ListPositionAllocator> positionAlloc = CreateObject<ListPositionAllocator>();
positionAlloc->Add(Vector(0.0, 0.0, 0.0));
positionAlloc->Add(Vector(distance, 0.0, 0.0));
mobility.SetPositionAllocator(positionAlloc);
mobility.SetMobilityModel("ns3::ConstantPositionMobilityModel");
mobility.Install(wifiApNode);
mobility.Install(wifiStaNodes);
/* Internet stack*/
InternetStackHelper stack;
stack.Install(wifiApNode);
stack.Install(wifiStaNodes);
streamNumber += stack.AssignStreams(wifiApNode, streamNumber);
streamNumber += stack.AssignStreams(wifiStaNodes, streamNumber);
Ipv4AddressHelper address;
address.SetBase("192.168.1.0", "255.255.255.0");
Ipv4InterfaceContainer staNodeInterfaces;
Ipv4InterfaceContainer apNodeInterface;
staNodeInterfaces = address.Assign(staDevices);
apNodeInterface = address.Assign(apDevice);
/* Setting applications */
ApplicationContainer serverApp;
auto serverNodes = downlink ? std::ref(wifiStaNodes) : std::ref(wifiApNode);
Ipv4InterfaceContainer serverInterfaces;
NodeContainer clientNodes;
for (std::size_t i = 0; i < nStations; i++)
{
serverInterfaces.Add(downlink ? staNodeInterfaces.Get(i)
: apNodeInterface.Get(0));
clientNodes.Add(downlink ? wifiApNode.Get(0) : wifiStaNodes.Get(i));
}
const auto maxLoad =
HePhy::GetDataRate(mcs, MHz_u{static_cast<double>(width)}, NanoSeconds(gi), 1) /
nStations;
if (udp)
{
// UDP flow
uint16_t port = 9;
UdpServerHelper server(port);
serverApp = server.Install(serverNodes.get());
streamNumber += server.AssignStreams(serverNodes.get(), streamNumber);
serverApp.Start(Seconds(0));
serverApp.Stop(simulationTime + Seconds(1));
const auto packetInterval = payloadSize * 8.0 / maxLoad;
for (std::size_t i = 0; i < nStations; i++)
{
UdpClientHelper client(serverInterfaces.GetAddress(i), port);
client.SetAttribute("MaxPackets", UintegerValue(4294967295U));
client.SetAttribute("Interval", TimeValue(Seconds(packetInterval)));
client.SetAttribute("PacketSize", UintegerValue(payloadSize));
ApplicationContainer clientApp = client.Install(clientNodes.Get(i));
streamNumber += client.AssignStreams(clientNodes.Get(i), streamNumber);
clientApp.Start(Seconds(1));
clientApp.Stop(simulationTime + Seconds(1));
}
}
else
{
// TCP flow
uint16_t port = 50000;
Address localAddress(InetSocketAddress(Ipv4Address::GetAny(), port));
PacketSinkHelper packetSinkHelper("ns3::TcpSocketFactory", localAddress);
serverApp = packetSinkHelper.Install(serverNodes.get());
streamNumber += packetSinkHelper.AssignStreams(serverNodes.get(), streamNumber);
serverApp.Start(Seconds(0));
serverApp.Stop(simulationTime + Seconds(1));
for (std::size_t i = 0; i < nStations; i++)
{
OnOffHelper onoff("ns3::TcpSocketFactory", Ipv4Address::GetAny());
onoff.SetAttribute("OnTime",
StringValue("ns3::ConstantRandomVariable[Constant=1]"));
onoff.SetAttribute("OffTime",
StringValue("ns3::ConstantRandomVariable[Constant=0]"));
onoff.SetAttribute("PacketSize", UintegerValue(payloadSize));
onoff.SetAttribute("DataRate", DataRateValue(maxLoad));
AddressValue remoteAddress(
InetSocketAddress(serverInterfaces.GetAddress(i), port));
onoff.SetAttribute("Remote", remoteAddress);
ApplicationContainer clientApp = onoff.Install(clientNodes.Get(i));
streamNumber += onoff.AssignStreams(clientNodes.Get(i), streamNumber);
clientApp.Start(Seconds(1));
clientApp.Stop(simulationTime + Seconds(1));
}
}
Simulator::Schedule(Seconds(0), &Ipv4GlobalRoutingHelper::PopulateRoutingTables);
Simulator::Stop(simulationTime + Seconds(1));
Simulator::Run();
// When multiple stations are used, there are chances that association requests
// collide and hence the throughput may be lower than expected. Therefore, we relax
// the check that the throughput cannot decrease by introducing a scaling factor (or
// tolerance)
auto tolerance = 0.10;
auto rxBytes = 0.0;
if (udp)
{
for (uint32_t i = 0; i < serverApp.GetN(); i++)
{
rxBytes +=
payloadSize * DynamicCast<UdpServer>(serverApp.Get(i))->GetReceived();
}
}
else
{
for (uint32_t i = 0; i < serverApp.GetN(); i++)
{
rxBytes += DynamicCast<PacketSink>(serverApp.Get(i))->GetTotalRx();
}
}
auto throughput = (rxBytes * 8) / simulationTime.GetMicroSeconds(); // Mbit/s
Simulator::Destroy();
std::cout << +mcs << "\t\t\t" << widthStr << " MHz\t\t"
<< (widthStr.size() > 3 ? "" : "\t") << gi << " ns\t\t\t" << throughput
<< " Mbit/s" << std::endl;
// test first element
if (mcs == minMcs && width == 20 && gi == 3200)
{
if (throughput * (1 + tolerance) < minExpectedThroughput)
{
NS_LOG_ERROR("Obtained throughput " << throughput << " is not expected!");
exit(1);
}
}
// test last element
if (mcs == maxMcs && width == maxChannelWidth && gi == 800)
{
if (maxExpectedThroughput > 0 &&
throughput > maxExpectedThroughput * (1 + tolerance))
{
NS_LOG_ERROR("Obtained throughput " << throughput << " is not expected!");
exit(1);
}
}
// Skip comparisons with previous cases if more than one stations are present
// because, e.g., random collisions in the establishment of Block Ack agreements
// have an impact on throughput
if (nStations == 1)
{
// test previous throughput is smaller (for the same mcs)
if (throughput * (1 + tolerance) > previous)
{
previous = throughput;
}
else if (throughput > 0)
{
NS_LOG_ERROR("Obtained throughput " << throughput << " is not expected!");
exit(1);
}
// test previous throughput is smaller (for the same channel width and GI)
if (throughput * (1 + tolerance) > prevThroughput[index])
{
prevThroughput[index] = throughput;
}
else if (throughput > 0)
{
NS_LOG_ERROR("Obtained throughput " << throughput << " is not expected!");
exit(1);
}
}
index++;
}
}
}
return 0;
}
请去掉这份代码的冗余部分,去掉mcs和channel的循环,仅保留最精简的下行吞吐量仿真,并使用MinstrelHtWifiManager速率选择算法,给我一份完整的代码