Deep learning ( 1 )

本文介绍了机器学习的基础知识,并详细解释了概率统计中的关键概念,如分布函数、联合分布及互信息等,为理解机器视觉等内容打下坚实的基础。

   今天开始学习 Machine   Learning,接下来还有 Deep Learning  & Pattern Recognition ,为机器视觉方面知识的系统学习做准备。

   相关知识

   分布函数:

   分布函数(cumulant distribution function,cdf)是概率统计中重要的的函数,正是通过它,可用数学分析的方法来研究随机变量。

设X是一个 随机变量,x是任意 实数,函数   称为X的分布函数。有时也记为X~F(x)
对于任意实数
   
,  
 
因此,若已知X的分布函数,就可以知道X落在任一 区间(x1,x2]上的 概率,在这个意义上说,分布函数完整地描述了随机变量的 统计规律性
如果将X看成是数轴上的随机点的坐标,那么,分布函数F(x)在x处的 函数值就表示X落在区间(-∞,x]上的概率。
F(x)为随机变量X的分布函数,其充分必要条件为
(1)(非降性)
 
(2)(有界性)
 
(3)右连续性
   
;
联合分布:
随机变量X和Y的联合分布函数是设(X,Y)是二维随机变量,对于任意实数x,y,二元函数:F(x,y) = P{(X<=x) 交 (Y<=y)} => P(X<=x, Y<=y)称为二维          随机变量(X,Y)的分布函数。
设E是一个随机试验,它的样本空间是S={e}。设X=X(e)和Y=Y(e)是定义在S上的随机变量,由它们构成的一个向量(X,Y),叫做二维随机向量或        二维随机变量。
设(X,Y)是二维 随机变量,对于任意实数x,y, 二元函数
F(x,y) = P{(X<=x) 交 (Y<=y)} => P(X<=x, Y<=y)
称为: 二维随机变量(X,Y)的 分布函数,或称为随机变量X和Y的联合分布函数
联合概率分布的几何意义
如果将 二维 随机变量(X,Y)看成是平面上随机点的坐标,那么 分布函数F(x,y)在(x,y)处的 函数值就是随机点(X,Y)落在以点(x,y)为顶点而位于该点左         下方的无穷矩形域内的 概率
对离散随机变量而言,联合分布概率 密度函数为Pr(X = x & Y = y),即
P(X=x and Y=y)=P(Y=y∣X=x)P(X=x)=P(X=x∣Y=y)P(Y=y)= P(X<=xi, Y<yi)
因为是概率分布函数,所以必须有
∑x∑yP(X=x and Y=y)=1

   互信息:

      互信息(Mutual Information)是信息论里一种有用的信息度量,它可以看成是一个随机变量中包含的关于另一个随机变量的信息量,或者说是一个随       机变量由于已知另一个随机变量而减少的不肯定性。

设两个随机变量
   
的联合分布为
   
,边际分布分别为
   
,互信息
   
是联合分布
   
与乘积分布
   
的相          对熵,即
互信息与多元 对数 似然比检验以及皮尔森
   
校验有着密切的联系。

信息的含义

信息是 物质、能量、信息及其属性的标示。逆维纳信息定义
信息是 确定性的增加。逆香农信息定义
信息是 事物现象及其属性标识的集合。

互信息的含义

信息论中的互信息
一般而言,信道中总是存在着噪声和干扰,信源发出消息x,通过信道后信宿只可能收到由于干扰作用引起的某种变形的y。信宿收到y后推测信源发出x的 概率,这一过程可由 后验概率p(x|y)来描述。相应地,信源发出x的概率p(x)称为 先验概率。我们定义x的后验概率与先验概率比值的 对数为y对x的互信息量(简称互信息)。 [1]  
根据熵的连锁规则,有
因此,
这个差叫做X和Y的互信息,记作I(X;Y)。
按照熵的定义展开可以得到:

非负性

 
,且等号成立的充要条件是
   
   
相互独立。

链法则

数据处理不等式

如果
   
构成马式链,则
 
其他
某个词t和某个类别Ci传统的互信息定义如下:
互信息是 计算语言学模型分析的常用方法,它度量两个对象之间的相互性。在过滤问题中用于度量特征对于主题的 区分度。互信息的定义与交叉熵近似。互信息本来是 信息论中的一个概念,用于表示信息之间的关系, 是两个随机变量统计相关性的测度,使用互信息理论进行特征抽取是基于如下假设:在某个特定类别出现频率高,但在其他类别出现频率比较低的词条与该类的互信息比较大。通常用互信息作为特征词和类别之间的测度,如果特征词属于该类的话,它们的互信息量最大。由于该方法不需要对特征词和类别之间关系的性质作任何假设,因此非常适合于 文本分类的特征和类别的 配准工作。



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值