hdu 3549 Flow Problem (Dinic)

Flow Problem
Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 21438    Accepted Submission(s): 10081

Problem Description
Network flow is a well-known difficult problem for ACMers. Given a graph, your task is to find out the maximum flow for the weighted directed graph.
 
Input
The first line of input contains an integer T, denoting the number of test cases.
For each test case, the first line contains two integers N and M, denoting the number of vertexes and edges in the graph. (2 <= N <= 15, 0 <= M <= 1000)
Next M lines, each line contains three integers X, Y and C, there is an edge from X to Y and the capacity of it is C. (1 <= X, Y <= N, 1 <= C <= 1000)
 
Output
For each test cases, you should output the maximum flow from source 1 to sink N.
 
Sample Input
2
3 2
1 2 1
2 3 1
3 3
1 2 1
2 3 1
1 3 1
 
Sample Output
Case 1: 1
Case 2: 2

 

C/C++:

 1 #include <map>
 2 #include <queue>
 3 #include <cmath>
 4 #include <vector>
 5 #include <string>
 6 #include <cstdio>
 7 #include <cstring>
 8 #include <climits>
 9 #include <iostream>
10 #include <algorithm>
11 #define INF 0x3f3f3f3f
12 using namespace std;
13 const int my_max = 20;
14 
15 int N, M, my_map[my_max][my_max], my_source, my_sink
16     , my_dis[my_max];
17 
18 int my_dfs(int my_step, int my_ans)
19 {
20     if (my_step == my_sink) return my_ans;
21 
22     int my_temp = my_ans;
23     for (int i = 1; i <= N && my_ans; ++ i)
24     {
25         if (my_dis[my_step] == my_dis[i] + 1 && my_map[my_step][i])
26         {
27             int t = my_dfs(i, min(my_ans, my_map[my_step][i]));
28             my_map[my_step][i] -= t;
29             my_map[i][my_step] += t;
30             my_ans -= t;
31         }
32     }
33     return my_temp - my_ans;
34 }
35 
36 bool my_bfs()
37 {
38     memset(my_dis, -1, sizeof(my_dis));
39     queue <int> Q;
40     my_dis[my_sink] = 0;
41     Q.push(my_sink);
42     while (!Q.empty())
43     {
44         int now = Q.front();
45         for (int i = 1; i <= N; ++ i)
46         {
47             if (my_map[i][now] > 0 && my_dis[i] == -1)
48             {
49                 my_dis[i] = my_dis[now] + 1;
50                 Q.push(i);
51             }
52         }
53         if (now == my_source) return true;
54         Q.pop();
55     }
56     return false;
57 }
58 
59 int my_dinic()
60 {
61     int my_ans = 0;
62     while (my_bfs())
63         my_ans += my_dfs(my_source, INF);
64 
65     return my_ans;
66 }
67 
68 int main()
69 {
70     int t;
71     scanf("%d", &t);
72     for (int i = 1; i <= t; ++ i)
73     {
74         memset(my_map, 0, sizeof(my_map));
75         scanf("%d%d", &N, &M);
76         my_source = 1, my_sink = N;
77 
78         while (M --)
79         {
80             int x, y, x_y;
81             scanf("%d%d%d", &x, &y, &x_y);
82             my_map[x][y] += x_y;
83         }
84         printf("Case %d: %d\n", i, my_dinic());
85     }
86     return 0;
87 }

 

转载于:https://www.cnblogs.com/GetcharZp/p/9485069.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值