Minimum Transport Cost
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 12860 Accepted Submission(s): 3633
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 12860 Accepted Submission(s): 3633
Problem Description
These are N cities in Spring country. Between each pair of cities there may be one transportation track or none. Now there is some cargo that should be delivered from one city to another. The transportation fee consists of two parts:
The cost of the transportation on the path between these cities, and
a certain tax which will be charged whenever any cargo passing through one city, except for the source and the destination cities.
You must write a program to find the route which has the minimum cost.
Input
First is N, number of cities. N = 0 indicates the end of input.
First is N, number of cities. N = 0 indicates the end of input.
The data of path cost, city tax, source and destination cities are given in the input, which is of the form:
a11 a12 ... a1N
a21 a22 ... a2N
...............
aN1 aN2 ... aNN
b1 b2 ... bN
a21 a22 ... a2N
...............
aN1 aN2 ... aNN
b1 b2 ... bN
c d
e f
...
g h
e f
...
g h
where aij is the transport cost from city i to city j, aij = -1 indicates there is no direct path between city i and city j. bi represents the tax of passing through city i. And the cargo is to be delivered from city c to city d, city e to city f, ..., and g = h = -1. You must output the sequence of cities passed by and the total cost which is of the form:
Output
From c to d :
Path: c-->c1-->......-->ck-->d
Total cost : ......
......
From c to d :
Path: c-->c1-->......-->ck-->d
Total cost : ......
......
From e to f :
Path: e-->e1-->..........-->ek-->f
Total cost : ......
Path: e-->e1-->..........-->ek-->f
Total cost : ......
Note: if there are more minimal paths, output the lexically smallest one. Print a blank line after each test case.
Sample Input
5
0 3 22 -1 4
3 0 5 -1 -1
22 5 0 9 20
-1 -1 9 0 4
4 -1 20 4 0
5 17 8 3 1
1 3
3 5
2 4
-1 -1
0
5
0 3 22 -1 4
3 0 5 -1 -1
22 5 0 9 20
-1 -1 9 0 4
4 -1 20 4 0
5 17 8 3 1
1 3
3 5
2 4
-1 -1
0
Sample Output
From 1 to 3 :
Path: 1-->5-->4-->3
Total cost : 21
From 1 to 3 :
Path: 1-->5-->4-->3
Total cost : 21
From 3 to 5 :
Path: 3-->4-->5
Total cost : 16
Path: 3-->4-->5
Total cost : 16
From 2 to 4 :
Path: 2-->1-->5-->4
Total cost : 17
Path: 2-->1-->5-->4
Total cost : 17
C/C++:
1 #include <map> 2 #include <queue> 3 #include <cmath> 4 #include <string> 5 #include <cstring> 6 #include <cstdio> 7 #include <climits> 8 #include <algorithm> 9 #define INF 0xffffff 10 using namespace std; 11 12 int n, my_map[110][110], my_tax[110], my_begin, my_end, my_path[110][110]; 13 14 void my_floyd() 15 { 16 for (int i = 1; i <= n; ++ i) 17 for (int j = 1; j <= n; ++ j) 18 my_path[i][j] = j; 19 for (int k = 1; k <= n; ++ k) 20 for (int i = 1; i <= n; ++ i) 21 for (int j = 1; j <= n; ++ j) 22 { 23 int my_temp = my_map[i][k] + my_map[k][j] + my_tax[k]; 24 if (my_temp < my_map[i][j]) 25 { 26 my_map[i][j] = my_temp; 27 my_path[i][j] = my_path[i][k]; 28 } 29 else if (my_temp == my_map[i][j] && my_path[i][j] > my_path[i][k]) 30 my_path[i][j] = my_path[i][k]; 31 } 32 } 33 34 int main() 35 { 36 while (~scanf("%d", &n), n) 37 { 38 for (int i = 1; i <= n; ++ i) 39 for (int j = 1; j <= n; ++ j) 40 { 41 int my_temp; 42 scanf("%d", &my_temp); 43 if (my_temp == -1) 44 my_map[i][j] = INF; 45 else 46 my_map[i][j] = my_temp; 47 } 48 for (int i = 1; i <= n; ++ i) 49 scanf("%d", &my_tax[i]); 50 my_floyd(); 51 while (scanf("%d%d", &my_begin, &my_end), my_begin != -1 || my_end != -1) 52 { 53 printf("From %d to %d :\n", my_begin, my_end); 54 printf("Path: %d", my_begin); 55 int my_now = my_begin; 56 while (my_now != my_end) 57 { 58 printf("-->%d", my_path[my_now][my_end]); 59 my_now = my_path[my_now][my_end]; 60 } 61 printf("\nTotal cost : %d\n\n", my_map[my_begin][my_end]); 62 } 63 } 64 return 0; 65 }
本文介绍了一种寻找两城市间最低运输成本路径的算法,包括路径成本和通过城市时的税费。采用Floyd算法进行计算,确保找到成本最低且字典序最小的路径。
916

被折叠的 条评论
为什么被折叠?



