前言
在电商数据分析和竞品监控领域,亚马逊数据采集一直是开发者面临的技术挑战。本文将深入解析Pangolin Scrape API的技术架构和实现原理,提供完整的集成方案和最佳实践。
技术背景与挑战分析
传统爬虫方案的技术瓶颈
1. 反爬虫机制的技术对抗
# 传统爬虫常见的反爬虫检测点
import requests
from selenium import webdriver
# 容易被检测的请求特征
headers = {
'User-Agent': 'Mozilla/5.0...', # 固定UA容易被识别
'Accept': 'text/html,application/xhtml+xml',
}
# IP封禁风险
response = requests.get('https://amazon.com/dp/B08N5WRWNW', headers=headers)
# 问题:单IP请求频率过高,容易触发封禁
2. 动态内容渲染的技术难点
// Amazon页面的动态加载机制
window.addEventListener('load', function() {
// 价格信息通过Ajax异步加载
fetch('/api/pricing-display-label')
.then(response => response.json())
.then(data => {
document.getElementById('price').innerHTML = data.price;
});
});
3. 数据结构解析的复杂性
# Amazon页面结构的复杂性示例
from bs4 import BeautifulSoup
html = """
<div id="feature-bullets" class="a-section a-spacing-medium a-spacing-top-small">
<ul class="a-unordered-list a-vertical a-spacing-mini">
<!-- 产品特性可能有多种嵌套结构 -->
<li><span class="a-list-item">特性1</span></li>
<li><span class="a-list-item">特性2</span></li>
</ul>
</div>
"""
# 解析逻辑需要处理多种可能的DOM结构
soup = BeautifulSoup(html, 'html.parser')
features = []
for li in soup.find_all('li'):
span = li.find('span', class_='a-list-item')
if span:
features.append(span.get_text().strip())

Pangolin Scrape API技术架构深度解析
1. 分布式代理池技术
Pangolin采用全球分布式代理池架构,通过智能路由算法实现高可用性:
# Pangolin内部代理池管理机制(示意)
class ProxyPool:
def __init__(self):
self.proxy_regions = {
'us-east': ['proxy1.pangolin.com:8001', 'proxy2.pangolin.com:8001'],
'us-west': ['proxy3.pangolin.com:8001', 'proxy4.pangolin.com:8001'],
'eu-central': ['proxy5.pangolin.com:8001', 'proxy6.pangolin.com:8001']
}
self.health_status = {}
def get_optimal_proxy(self, target_region='us'):
"""智能选择最优代理节点"""
available_proxies = self.proxy_regions.get(f'{target_region}-east', [])
return self.select_by_latency_and_success_rate(available_proxies)
def rotate_proxy(self, failed_proxy):
"""代理轮换机制"""
self.mark_proxy_failed(failed_proxy)
return self.get_next_available_proxy()
2. 智能反检测技术
# 浏览器指纹随机化技术
class BrowserFingerprint:
def __init__(self):
self.user_agents = [
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36',
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36'
]
self.screen_resolutions = ['1920x1080', '1366x768', '1440x900']
self.languages = ['en-US,en;q=0.9', 'en-GB,en;q=0.8']
def generate_headers(self):
"""生成随机化请求头"""
return {
'User-Agent': random.choice(self.user_agents),
'Accept-Language': random.choice(self.languages),
'Accept-Encoding': 'gzip, deflate, br',
'DNT': '1',
'Connection': 'keep-alive',
'Upgrade-Insecure-Requests': '1',
}
3. 数据解析引擎
# Pangolin的智能数据解析引擎
class AmazonDataParser:
def __init__(self):
self.selectors = {
'title': [
'#productTitle',
'.product-title',
'h1.a-size-large'
],
'price': [
'.a-price-whole',
'#price_inside_buybox',
'.a-offscreen'
],
'rating': [
'.a-icon-alt',
'[data-hook="average-star-rating"]'
]
}
def extract_product_data(self, html_content):
"""多策略数据提取"""
soup = BeautifulSoup(html_content, 'html.parser')
result = {}
for field, selectors in self.selectors.items():
for selector in selectors:
element = soup.select_one(selector)
if element:
result[field] = self.clean_text(element.get_text())
break
return result
def clean_text(self, text):
"""文本清洗和标准化"""
import re
text = re.sub(r'\s+', ' ', text.strip())
text = re.sub(r'[^\w\s\.\$\-\+\(\)]', '', text)
return text
快速集成指南
1. 环境准备
# 创建虚拟环境
python -m venv pangolin_env
source pangolin_env/bin/activate # Linux/Mac
# pangolin_env\Scripts\activate # Windows
# 安装依赖
pip install requests pandas beautifulsoup4 lxml
2. API密钥配置
# config.py
import os
from dataclasses import dataclass
@dataclass
class PangolinConfig:
api_key: str = os.getenv('PANGOLIN_API_KEY', 'your_api_key_here')
base_url: str = 'https://api.pangolinfo.com'
timeout: int = 30
max_retries: int = 3
def __post_init__(self):
if self.api_key == 'your_api_key_here':
raise ValueError("请设置有效的API密钥")
# 使用环境变量管理敏感信息
# export PANGOLIN_API_KEY="your_actual_api_key"
3. 同步API调用实现
# pangolin_sync_client.py
import requests
import time
from typing import Dict, List, Optional
from config import PangolinConfig
class PangolinSyncClient:
def __init__(self, config: PangolinConfig):
self.config = config
self.session = requests.Session()
self.session.headers.update({
'Authorization': f'Bearer {config.api_key}',
'Content-Type': 'application/json'
})
def scrape_product(self, asin: str, marketplace: str = 'amazon.com') -> Dict:
"""同步获取产品数据"""
url = f"{self.config.base_url}/scrape"
payload = {
'url': f'https://{marketplace}/dp/{asin}',
'format': 'json',
'parse': True
}
try:
response = self.session.post(
url,
json=payload,
timeout=self.config.timeout
)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
print(f"请求失败: {e}")
return {}
def batch_scrape_products(self, asins: List[str], delay: float = 1.0) -> List[Dict]:
"""批量获取产品数据"""
results = []
for i, asin in enumerate(asins):
print(f"处理第 {i+1}/{len(asins)} 个产品: {asin}")
result = self.scrape_product(asin)
if result:
results.append(result)
# 控制请求频率
if i < len(asins) - 1:
time.sleep(delay)
return results
# 使用示例
if __name__ == "__main__":
config = PangolinConfig()
client = PangolinSyncClient(config)
# 单个产品测试
product_data = client.scrape_product('B08N5WRWNW')
print(f"产品标题: {product_data.get('title', 'N/A')}")
print(f"产品价格: {product_data.get('price', 'N/A')}")
4. 异步API高性能实现
# pangolin_async_client.py
import asyncio
import aiohttp
import time
from typing import Dict, List
from config import PangolinConfig
class PangolinAsyncClient:
def __init__(self, config: PangolinConfig):
self.config = config
self.semaphore = asyncio.Semaphore(10) # 限制并发数
async def create_session(self) -> aiohttp.ClientSession:
"""创建异步HTTP会话"""
headers = {
'Authorization': f'Bearer {self.config.api_key}',
'Content-Type': 'application/json'
}
timeout = aiohttp.ClientTimeout(total=self.config.timeout)
return aiohttp.ClientSession(headers=headers, timeout=timeout)
async def submit_scrape_task(self, session: aiohttp.ClientSession,
asin: str, marketplace: str = 'amazon.com') -> str:
"""提交异步抓取任务"""
url = f"{self.config.base_url}/async/submit"
payload = {
'url': f'https://{marketplace}/dp/{asin}',
'format': 'json',
'parse': True,
'callback_url': 'https://your-webhook-endpoint.com/callback' # 可选
}
async with self.semaphore:
try:
async with session.post(url, json=payload) as response:
response.raise_for_status()
result = await response.json()
return result.get('task_id')
except Exception as e:
print(f"提交任务失败 {asin}: {e}")
return None
async def get_task_result(self, session: aiohttp.ClientSession,
task_id: str) -> Dict:
"""获取任务结果"""
url = f"{self.config.base_url}/async/result/{task_id}"
max_attempts = 30 # 最大轮询次数
for attempt in range(max_attempts):
try:
async with session.get(url) as response:
response.raise_for_status()
result = await response.json()
if result.get('status') == 'completed':
return result.get('data', {})
elif result.get('status') == 'failed':
print(f"任务失败: {result.get('error')}")
return {}
# 等待2秒后重试
await asyncio.sleep(2)
except Exception as e:
print(f"获取结果失败: {e}")
await asyncio.sleep(2)
print(f"任务超时: {task_id}")
return {}
async def batch_scrape_async(self, asins: List[str]) -> List[Dict]:
"""异步批量抓取"""
async with await self.create_session() as session:
# 第一阶段:提交所有任务
print("提交抓取任务...")
tasks = []
for asin in asins:
task = self.submit_scrape_task(session, asin)
tasks.append(task)
task_ids = await asyncio.gather(*tasks)
valid_task_ids = [tid for tid in task_ids if tid]
print(f"成功提交 {len(valid_task_ids)} 个任务")
# 第二阶段:获取所有结果
print("获取抓取结果...")
result_tasks = []
for task_id in valid_task_ids:
task = self.get_task_result(session, task_id)
result_tasks.append(task)
results = await asyncio.gather(*result_tasks)
return [result for result in results if result]
# 性能测试示例
async def performance_test():
config = PangolinConfig()
client = PangolinAsyncClient(config)
# 测试100个ASIN的抓取性能
test_asins = [f'B08N5WRWN{i:01d}' for i in range(100)]
start_time = time.time()
results = await client.batch_scrape_async(test_asins)
end_time = time.time()
print(f"抓取 {len(test_asins)} 个产品")
print(f"成功获取 {len(results)} 个结果")
print(f"总耗时: {end_time - start_time:.2f} 秒")
print(f"平均每个产品: {(end_time - start_time) / len(test_asins):.2f} 秒")
if __name__ == "__main__":
asyncio.run(performance_test())
5. 数据处理和分析
# data_processor.py
import pandas as pd
import numpy as np
from typing import List, Dict
import re
class AmazonDataProcessor:
def __init__(self):
self.price_pattern = re.compile(r'\$?([\d,]+\.?\d*)')
self.rating_pattern = re.compile(r'([\d\.]+)\s*out\s*of\s*5')
def clean_price(self, price_str: str) -> float:
"""清洗价格数据"""
if not price_str:
return 0.0
match = self.price_pattern.search(str(price_str))
if match:
price = match.group(1).replace(',', '')
return float(price)
return 0.0
def clean_rating(self, rating_str: str) -> float:
"""清洗评分数据"""
if not rating_str:
return 0.0
match = self.rating_pattern.search(str(rating_str))
if match:
return float(match.group(1))
return 0.0
def process_batch_data(self, raw_data: List[Dict]) -> pd.DataFrame:
"""批量处理数据"""
processed_data = []
for item in raw_data:
processed_item = {
'asin': item.get('asin', ''),
'title': item.get('title', ''),
'price': self.clean_price(item.get('price')),
'rating': self.clean_rating(item.get('rating')),
'review_count': self.extract_review_count(item.get('reviews', '')),
'availability': item.get('availability', ''),
'brand': item.get('brand', ''),
'category': item.get('category', ''),
'features': item.get('features', []),
'images': item.get('images', []),
'scraped_at': pd.Timestamp.now()
}
processed_data.append(processed_item)
df = pd.DataFrame(processed_data)
return self.add_derived_metrics(df)
def extract_review_count(self, reviews_str: str) -> int:
"""提取评论数量"""
if not reviews_str:
return 0
# 匹配各种评论数量格式
patterns = [
r'([\d,]+)\s*customer\s*reviews?',
r'([\d,]+)\s*ratings?',
r'\(([\d,]+)\)'
]
for pattern in patterns:
match = re.search(pattern, str(reviews_str), re.IGNORECASE)
if match:
count_str = match.group(1).replace(',', '')
return int(count_str)
return 0
def add_derived_metrics(self, df: pd.DataFrame) -> pd.DataFrame:
"""添加衍生指标"""
# 价格区间分类
df['price_range'] = pd.cut(df['price'],
bins=[0, 25, 50, 100, 200, float('inf')],
labels=['$0-25', '$25-50', '$50-100', '$100-200', '$200+'])
# 评分等级
df['rating_grade'] = pd.cut(df['rating'],
bins=[0, 3.0, 3.5, 4.0, 4.5, 5.0],
labels=['Poor', 'Fair', 'Good', 'Very Good', 'Excellent'])
# 受欢迎程度评分(基于评分和评论数量)
df['popularity_score'] = (df['rating'] * np.log1p(df['review_count'])).round(2)
return df
def generate_insights(self, df: pd.DataFrame) -> Dict:
"""生成数据洞察"""
insights = {
'total_products': len(df),
'avg_price': df['price'].mean(),
'avg_rating': df['rating'].mean(),
'price_distribution': df['price_range'].value_counts().to_dict(),
'rating_distribution': df['rating_grade'].value_counts().to_dict(),
'top_brands': df['brand'].value_counts().head(10).to_dict(),
'high_value_products': df.nlargest(10, 'popularity_score')[['title', 'price', 'rating', 'popularity_score']].to_dict('records')
}
return insights
# 使用示例
def analyze_competitor_data():
# 假设已经通过Pangolin API获取了数据
processor = AmazonDataProcessor()
# 模拟原始数据
raw_data = [
{
'asin': 'B08N5WRWNW',
'title': 'Echo Dot (4th Gen)',
'price': '$49.99',
'rating': '4.7 out of 5 stars',
'reviews': '150,234 customer reviews',
'brand': 'Amazon',
'category': 'Electronics'
}
# ... 更多数据
]
# 处理数据
df = processor.process_batch_data(raw_data)
# 生成洞察
insights = processor.generate_insights(df)
print("=== 竞品分析报告 ===")
print(f"总产品数: {insights['total_products']}")
print(f"平均价格: ${insights['avg_price']:.2f}")
print(f"平均评分: {insights['avg_rating']:.2f}")
print("\n价格分布:")
for price_range, count in insights['price_distribution'].items():
print(f" {price_range}: {count} 个产品")
高级应用场景
1. 竞品监控系统
# competitor_monitor.py
import schedule
import time
from datetime import datetime
from pangolin_async_client import PangolinAsyncClient
from data_processor import AmazonDataProcessor
class CompetitorMonitor:
def __init__(self, config):
self.client = PangolinAsyncClient(config)
self.processor = AmazonDataProcessor()
self.competitor_asins = []
def add_competitor(self, asin: str, brand: str):
"""添加竞品监控"""
self.competitor_asins.append({
'asin': asin,
'brand': brand,
'added_at': datetime.now()
})
async def daily_monitor(self):
"""每日监控任务"""
print(f"开始每日竞品监控 - {datetime.now()}")
asins = [item['asin'] for item in self.competitor_asins]
results = await self.client.batch_scrape_async(asins)
# 处理数据
df = self.processor.process_batch_data(results)
# 检测价格变化
price_changes = self.detect_price_changes(df)
# 发送告警
if price_changes:
self.send_alerts(price_changes)
# 保存历史数据
self.save_historical_data(df)
def detect_price_changes(self, current_df):
"""检测价格变化"""
# 这里需要与历史数据比较
# 实际实现中需要连接数据库
pass
def send_alerts(self, changes):
"""发送价格变化告警"""
# 实现邮件/Slack/微信告警
pass
# 设置定时任务
monitor = CompetitorMonitor(config)
schedule.every().day.at("09:00").do(lambda: asyncio.run(monitor.daily_monitor()))
2. 选品分析系统
# product_research.py
class ProductResearchEngine:
def __init__(self, pangolin_client):
self.client = pangolin_client
self.processor = AmazonDataProcessor()
async def analyze_category(self, category_url: str, max_pages: int = 5):
"""分析类目下的产品"""
print(f"分析类目: {category_url}")
# 获取类目页面数据
category_data = await self.scrape_category_pages(category_url, max_pages)
# 提取产品ASIN列表
asins = self.extract_asins_from_category(category_data)
# 批量获取产品详情
product_details = await self.client.batch_scrape_async(asins)
# 数据分析
df = self.processor.process_batch_data(product_details)
# 生成选品建议
recommendations = self.generate_product_recommendations(df)
return recommendations
def generate_product_recommendations(self, df):
"""生成选品建议"""
# 筛选条件
criteria = {
'min_rating': 4.0,
'min_reviews': 100,
'max_price': 100,
'min_popularity_score': 10
}
filtered_df = df[
(df['rating'] >= criteria['min_rating']) &
(df['review_count'] >= criteria['min_reviews']) &
(df['price'] <= criteria['max_price']) &
(df['popularity_score'] >= criteria['min_popularity_score'])
]
# 按受欢迎程度排序
recommendations = filtered_df.nlargest(20, 'popularity_score')
return recommendations[['asin', 'title', 'price', 'rating', 'review_count', 'popularity_score']]
错误处理和最佳实践
1. 重试机制实现
# retry_handler.py
import asyncio
import random
from functools import wraps
def async_retry(max_attempts=3, delay=1, backoff=2, exceptions=(Exception,)):
"""异步重试装饰器"""
def decorator(func):
@wraps(func)
async def wrapper(*args, **kwargs):
attempt = 0
current_delay = delay
while attempt < max_attempts:
try:
return await func(*args, **kwargs)
except exceptions as e:
attempt += 1
if attempt >= max_attempts:
raise e
# 指数退避 + 随机抖动
jitter = random.uniform(0.1, 0.3)
sleep_time = current_delay * (1 + jitter)
print(f"第 {attempt} 次重试失败,{sleep_time:.2f}秒后重试: {e}")
await asyncio.sleep(sleep_time)
current_delay *= backoff
return wrapper
return decorator
# 使用示例
class RobustPangolinClient(PangolinAsyncClient):
@async_retry(max_attempts=3, delay=2, exceptions=(aiohttp.ClientError,))
async def submit_scrape_task(self, session, asin, marketplace='amazon.com'):
return await super().submit_scrape_task(session, asin, marketplace)
2. 缓存策略
# cache_manager.py
import redis
import json
import hashlib
from datetime import timedelta
class CacheManager:
def __init__(self, redis_url='redis://localhost:6379'):
self.redis_client = redis.from_url(redis_url)
self.default_ttl = 3600 # 1小时
def generate_cache_key(self, asin: str, marketplace: str = 'amazon.com') -> str:
"""生成缓存键"""
key_data = f"{marketplace}:{asin}"
return f"pangolin:product:{hashlib.md5(key_data.encode()).hexdigest()}"
def get_cached_data(self, asin: str, marketplace: str = 'amazon.com'):
"""获取缓存数据"""
cache_key = self.generate_cache_key(asin, marketplace)
cached_data = self.redis_client.get(cache_key)
if cached_data:
return json.loads(cached_data)
return None
def cache_data(self, asin: str, data: dict, marketplace: str = 'amazon.com', ttl: int = None):
"""缓存数据"""
cache_key = self.generate_cache_key(asin, marketplace)
ttl = ttl or self.default_ttl
self.redis_client.setex(
cache_key,
ttl,
json.dumps(data, ensure_ascii=False)
)
# 集成缓存的客户端
class CachedPangolinClient(PangolinAsyncClient):
def __init__(self, config, cache_manager):
super().__init__(config)
self.cache = cache_manager
async def scrape_product_with_cache(self, asin: str, marketplace: str = 'amazon.com'):
"""带缓存的产品抓取"""
# 先检查缓存
cached_data = self.cache.get_cached_data(asin, marketplace)
if cached_data:
print(f"从缓存获取数据: {asin}")
return cached_data
# 缓存未命中,调用API
print(f"API获取数据: {asin}")
async with await self.create_session() as session:
task_id = await self.submit_scrape_task(session, asin, marketplace)
if task_id:
result = await self.get_task_result(session, task_id)
if result:
# 缓存结果
self.cache.cache_data(asin, result, marketplace)
return result
return {}
性能优化策略
1. 连接池管理
# connection_pool.py
import aiohttp
import asyncio
from aiohttp import TCPConnector
class OptimizedPangolinClient(PangolinAsyncClient):
def __init__(self, config):
super().__init__(config)
self.connector = None
self.session = None
async def __aenter__(self):
"""异步上下文管理器入口"""
# 创建优化的连接器
self.connector = TCPConnector(
limit=100, # 总连接池大小
limit_per_host=20, # 每个主机的连接数
ttl_dns_cache=300, # DNS缓存时间
use_dns_cache=True,
keepalive_timeout=30,
enable_cleanup_closed=True
)
# 创建会话
timeout = aiohttp.ClientTimeout(total=self.config.timeout)
self.session = aiohttp.ClientSession(
connector=self.connector,
timeout=timeout,
headers={
'Authorization': f'Bearer {self.config.api_key}',
'Content-Type': 'application/json'
}
)
return self
async def __aexit__(self, exc_type, exc_val, exc_tb):
"""异步上下文管理器出口"""
if self.session:
await self.session.close()
if self.connector:
await self.connector.close()
# 使用示例
async def optimized_batch_scraping():
config = PangolinConfig()
async with OptimizedPangolinClient(config) as client:
asins = ['B08N5WRWNW', 'B08N5WRWN1', 'B08N5WRWN2']
results = await client.batch_scrape_async(asins)
return results
2. 内存优化
# memory_optimizer.py
import gc
import psutil
import os
from typing import Iterator, List, Dict
class MemoryOptimizedProcessor:
def __init__(self, chunk_size: int = 1000):
self.chunk_size = chunk_size
def process_large_dataset(self, data_iterator: Iterator[Dict]) -> Iterator[pd.DataFrame]:
"""分块处理大数据集"""
chunk = []
for item in data_iterator:
chunk.append(item)
if len(chunk) >= self.chunk_size:
# 处理当前块
df = self.process_chunk(chunk)
yield df
# 清理内存
chunk.clear()
gc.collect()
# 处理最后一块
if chunk:
df = self.process_chunk(chunk)
yield df
def process_chunk(self, chunk: List[Dict]) -> pd.DataFrame:
"""处理数据块"""
processor = AmazonDataProcessor()
return processor.process_batch_data(chunk)
def monitor_memory_usage(self):
"""监控内存使用情况"""
process = psutil.Process(os.getpid())
memory_info = process.memory_info()
print(f"内存使用: {memory_info.rss / 1024 / 1024:.2f} MB")
print(f"虚拟内存: {memory_info.vms / 1024 / 1024:.2f} MB")
监控和日志
# monitoring.py
import logging
import time
from functools import wraps
from prometheus_client import Counter, Histogram, start_http_server
# Prometheus指标
REQUEST_COUNT = Counter('pangolin_requests_total', 'Total requests', ['method', 'status'])
REQUEST_DURATION = Histogram('pangolin_request_duration_seconds', 'Request duration')
# 配置日志
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('pangolin_client.log'),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
def monitor_performance(func):
"""性能监控装饰器"""
@wraps(func)
async def wrapper(*args, **kwargs):
start_time = time.time()
try:
result = await func(*args, **kwargs)
REQUEST_COUNT.labels(method=func.__name__, status='success').inc()
return result
except Exception as e:
REQUEST_COUNT.labels(method=func.__name__, status='error').inc()
logger.error(f"函数 {func.__name__} 执行失败: {e}")
raise
finally:
duration = time.time() - start_time
REQUEST_DURATION.observe(duration)
logger.info(f"函数 {func.__name__} 执行时间: {duration:.2f}秒")
return wrapper
# 启动监控服务器
start_http_server(8000)
总结
Pangolin Scrape API通过其先进的技术架构和丰富的功能特性,为开发者提供了高效、稳定的亚马逊数据采集解决方案。本文详细介绍了从基础集成到高级应用的完整技术方案,包括:
- 技术架构深度解析:分布式代理池、智能反检测、数据解析引擎
- 完整集成方案:同步/异步API调用、错误处理、缓存策略
- 高级应用场景:竞品监控、选品分析、数据处理
- 性能优化策略:连接池管理、内存优化、监控日志
通过合理运用这些技术方案,开发者可以构建出高性能、高可靠性的电商数据采集系统,为业务决策提供强有力的数据支撑。
相关资源
关于作者:资深后端工程师,专注于大规模数据采集和处理系统设计,在电商数据分析领域有丰富的实战经验。
声明:本文所有代码示例仅供学习参考,实际使用时请遵守相关网站的robots.txt协议和使用条款。

被折叠的 条评论
为什么被折叠?



