机器学习算法梳理(三):决策树

决策树梳理

一、信息论基础

熵是用来衡量一个系统混论程度的物理量,代表一个系统中蕴含多少信息量,信息量越大表明一个系统不确定性就越大,就存在越多的可能性。

  • 信息熵便是信息的期望值,可以记作:
    在这里插入图片描述
  • 条件熵
    在这里插入图片描述
  • 信息增益
    在这里插入图片描述
  • 信息增益率
    在这里插入图片描述
  • 基尼指数
    -

二、决策树的不同分类算法

算法 支持模型 树结构 特征选择 连续值处理 缺失值处理 剪枝
ID3 分类 多叉树 信息增益 不支持 不支持 不支持
C4.5 分类 多叉树 信息增益比 支持 支持 支持
CART 分类/回归 二叉树 基尼系数,均方差 支持 支持 支持
  • ID3
    由于期望信息越小,信息增益越大,从而纯度越高,因此ID3算法的核心思想就是以信息增益度量属性选择,选择分裂后信息增益最大的属性进行分裂。
  • C4.5
    ID3算法存在一个问题,就是偏向于多值属性,例如,如果存在唯一标识属性ID,则ID3会选择它作为分裂属性,这样虽然使得划分充分纯净,但这种划分对分类几乎毫无用处。ID3的后继算法C4.5使用增益率(gain ratio)的信息增益扩充,试图克服这个偏倚。
  • CART
    ID3中根据属性值分割数据,之后该特征不会再起作用,这种快速切割的方式会影响算法的准确率。CART是一棵二叉树,采用二元切分法,每次把数据切成两份,分别进入左子树、右子树。而且每个非叶子节点都有两个孩子,所以CART的叶子节点比非叶子多1。相比ID3和C4.5,CART应用要多一些,既可以用于分类也可以用于回归。CART分类时,使用基尼指数(Gini)来选择最好的数据分割的特征,gini描述的是纯度,与信息熵的含义相似。CART中每一次迭代都会降低GINI系数。

三、回归树原理

在这里插入图片描述

四、决策树防止过拟合手段

  • 预剪枝(pre-pruning):预剪枝就是在构造决策树的过程中,先对每个结点在划分前进行估计,若果当前结点的划分不能带来决策树模型泛华性能的提升,
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值