In computer science, a heap is a specialized tree-based data structure that satisfies the heap property: if P is a parent node of C, then the key (the value) of P is either greater than or equal to (in a max heap) or less than or equal to (in a min heap) the key of C. A common implementation of a heap is the binary heap, in which the tree is a complete binary tree. (Quoted from Wikipedia at https://en.wikipedia.org/wiki/Heap_(data_structure))
Your job is to tell if a given complete binary tree is a heap.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers: M (≤ 100), the number of trees to be tested; and N (1 < N ≤ 1,000), the number of keys in each tree, respectively. Then M lines follow, each contains N distinct integer keys (all in the range of int), which gives the level order traversal sequence of a complete binary tree.
Output Specification:
For each given tree, print in a line Max Heap if it is a max heap, or Min Heap for a min heap, or Not Heap if it is not a heap at all. Then in the next line print the tree’s postorder traversal sequence. All the numbers are separated by a space, and there must no extra space at the beginning or the end of the line.
Sample Input:
3 8
98 72 86 60 65 12 23 50
8 38 25 58 52 82 70 60
10 28 15 12 34 9 8 56
Sample Output:
Max Heap
50 60 65 72 12 23 86 98
Min Heap
60 58 52 38 82 70 25 8
Not Heap
56 12 34 28 9 8 15 10
题目大意:给出M个询问,每个询问给出N个数字,表示完全二叉树的层序遍历。判断这棵树是否是堆,最后输出后序遍历。
思路:对于每个有孩子的结点,去判断它是否比孩子结点大于等于或者小于等于:如果比孩子节点小,肯定不是最大堆;如果比孩子结点大,肯定不是最小堆。最后输出后序遍历。
代码如下:
#include <iostream>
#include <vector>
using namespace std;
vector<int>v;/* 存每次询问的后序遍历结果 */
void postorder(int a[], int index, int n)
{
if(index > n) return ;
postorder(a, index*2, n);
postorder(a, index*2+1, n);
v.push_back(a[index]);
}
int main()
{
int m, n;
cin >> m >> n;
while(m--)
{
int i, a[1001];
for(i=1; i<=n; i++) cin >> a[i];
int is_min = 1, is_max = 1;/* 先假设是最大堆或者最小堆 */
for(i=1; i*2<=n; i++)/* 如果有左孩子就进入循环 */
{
if(a[i] < a[i*2]) is_max = 0;
if(a[i] > a[i*2]) is_min = 0;
if(i*2+1 <= n)/* 如果有有孩子,则还需要判断右孩子 */
{
if(a[i] < a[i*2+1]) is_max = 0;
if(a[i] > a[i*2+1]) is_min = 0;
}
}
if(is_max == 1) cout << "Max Heap\n";
else if(is_min == 1) cout << "Min Heap\n";
else cout << "Not Heap\n";
postorder(a, 1, n);
cout << v[0];
for(i=1; i<v.size(); i++)
cout << " " << v[i];
cout << endl;
v.clear();
}
return 0;
}
总结
- 一棵二叉树的层序遍历可以获得的信息:建树、前序、中序、后序。
- 在求解问题的时候,如果要判断是否满足一个性质,而这个性质又需要局部满足性质,则可以先假定满足这个性质,然后通过访问局部去判断,只有有一处不满足就整体不满足这个性质了。
如:在本题中,堆的局部也是堆,每个结点又必须既比左孩子大于等于(小于等于),又比右孩子大于等于(小于等于)。所以在判断是否是堆是,先假设是堆,然后通过遍历每个结点,只有有一处不满足,相应变量就置为0。最后去判断就可以了。