Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
解法一:
逐层叠加。非O(n) space。
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
if(!triangle.size()) return 0;
vector<int> sum(1,triangle[0][0]);
for(int i= 1; i < triangle.size(); i++){
vector<int> tmp(triangle[i].size(),0);
for(int j = 0; j<triangle[i].size(); j++){
tmp[j] = min(sum[max(0,j-1)],sum[min(int(sum.size()-1),j)]) + triangle[i][j];
}
sum = tmp;
}
sort(sum.begin(),sum.end());
return sum[0];
}
};
思想类似,只不过从最后一层网上做dp。
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
int n = triangle.size();
vector<int> dp(triangle.back());
for(int i= n-2; i>=0; i--){
for (int j=0; j<=i; j++)
dp[j] = min(dp[j],dp[j+1])+triangle[i][j];
}
return dp[0];
}
};