Given an unsorted array of integers, find the length of longest increasing subsequence.
For example,
Given [10, 9, 2, 5, 3, 7, 101, 18]
,
The longest increasing subsequence is [2, 3, 7, 101]
, therefore the length is 4
.
Note that there may be more than one LIS combination, it is only necessary for you to return the length.
Your algorithm should run in O(n2) complexity.
Follow up: Could you improve it to O(n log n) time complexity?
解法一:
借鉴了之前increasing triplet sequence的思路。
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
if(nums.size()<1) return 0;
vector<int> seq(1,INT_MAX);
for(int i=0; i< nums.size(); i++){
for(int j=0; j<seq.size(); j++){
if(nums[i]<=seq[j]){
seq.erase(seq.begin()+j);
seq.insert(seq.begin()+j,nums[i]);
break;
}
}
if(nums[i]>seq.back()) seq.push_back(nums[i]);
}
return seq.size();
}
};