[leetcode] 309. Best Time to Buy and Sell Stock with Cooldown

股票买卖算法

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie, buy one and sell one share of the stock multiple times) with the following restrictions:

  • You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
  • After you sell your stock, you cannot buy stock on next day. (ie, cooldown 1 day)

Example:

prices = [1, 2, 3, 0, 2]
maxProfit = 3
transactions = [buy, sell, cooldown, buy, sell]

解法一:

此题需要维护三个一维数组buy, sell,和rest。其中:

buy[i]表示在第i天之前最后一个操作是买,此时的最大收益。

sell[i]表示在第i天之前最后一个操作是卖,此时的最大收益。

rest[i]表示在第i天之前最后一个操作是冷冻期,此时的最大收益。

我们写出递推式为:

buy[i]  = max(rest[i-1] - price, buy[i-1]) 
sell[i] = max(buy[i-1] + price, sell[i-1])
rest[i] = max(sell[i-1], buy[i-1], rest[i-1])


另外,由于冷冻期的存在,我们可以得出rest[i] = sell[i-1],这样,我们可以将上面三个递推式精简到两个:

buy[i]  = max(sell[i-2] - price, buy[i-1]) 
sell[i] = max(buy[i-1] + price, sell[i-1])

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int buy = INT_MIN, pre_buy = 0, sell = 0, pre_sell = 0;
        for (int price : prices) {
            pre_buy = buy;
            buy = max(pre_sell - price, pre_buy);
            pre_sell = sell;
            sell = max(pre_buy + price, pre_sell);
        }
        return sell;
    }
};




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值