大数据学习之sparksql-JDBC到其他数据库

本文详细介绍了如何使用 Apache Spark 通过 JDBC 连接 PostgreSQL 数据库,进行数据读取和写入操作。包括指定 DataFrame 列数据类型、保存数据到 JDBC 源、以及在写入时指定创建表列数据类型的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

jdbcDF = spark.read \
    .format("jdbc") \
    .option("url", "jdbc:postgresql:dbserver") \
    .option("dbtable", "schema.tablename") \
    .option("user", "username") \
    .option("password", "password") \
    .load()

jdbcDF2 = spark.read \
    .jdbc("jdbc:postgresql:dbserver", "schema.tablename",
          properties={"user": "username", "password": "password"})

# Specifying dataframe column data types on read
jdbcDF3 = spark.read \
    .format("jdbc") \
    .option("url", "jdbc:postgresql:dbserver") \
    .option("dbtable", "schema.tablename") \
    .option("user", "username") \
    .option("password", "password") \
    .option("customSchema", "id DECIMAL(38, 0), name STRING") \
    .load()

# Saving data to a JDBC source
jdbcDF.write \
    .format("jdbc") \
    .option("url", "jdbc:postgresql:dbserver") \
    .option("dbtable", "schema.tablename") \
    .option("user", "username") \
    .option("password", "password") \
    .save()

jdbcDF2.write \
    .jdbc("jdbc:postgresql:dbserver", "schema.tablename",
          properties={"user": "username", "password": "password"})

# Specifying create table column data types on write
jdbcDF.write \
    .option("createTableColumnTypes", "name CHAR(64), comments VARCHAR(1024)") \
    .jdbc("jdbc:postgresql:dbserver", "schema.tablename",
          properties={"user": "username", "password": "password"})

转载于:https://www.cnblogs.com/lihuanghao/p/9429923.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值