logstash

本文介绍了使用Logstash进行日志收集与处理的方法,并探讨了Elasticsearch作为分布式搜索及存储解决方案的应用。此外,还提供了Kibana用于数据可视化的实践指南。
[b]logstash[/b]
http://logstash.net/
https://botbot.me/freenode/logstash/

http://semicomplete.com/presentations/logstash-1/#1
http://walkoven.com/
http://logwrangler.mtcode.com/
Building and running logstash from source:
https://github.com/logstash/logstash/wiki/Building-and-running-logstash-from-source
http://www.mjladd.com/2012/08/31/logstash-init.html
https://groups.google.com/forum/?fromgroups=#!topic/logstash-users/8Km9VFqapig
http://semicomplete.com/files/logstash/
http://jaseywang.me/2012/12/26/logstash-%E5%88%9D%E4%BD%93%E9%AA%8C/

[b]Logstash json_event pattern for log4j[/b]
https://github.com/lusis/log4j-jsonevent-layout

[b]Bash scripts for managing backup, delete, and restore of elasticsearch indexes created by logstash.[/b]
https://github.com/imperialwicket/elasticsearch-logstash-index-mgmt

[b]Kibana[/b]
https://github.com/rashidkpc/Kibana

[b]logback-akka[/b]
https://github.com/backchatio/logback-akka
https://github.com/mkw/logback-logstash-redis

[b]分布式搜索elasticsearch配置文件详解[/b]
http://blog.youkuaiyun.com/laigood12345/article/details/7421197
[b]用ElasticSearch存储日志[/b]
http://chenlinux.com/2012/08/26/translate-using-elasticsearch-for-logs/
[b]using elasticsearch for logs[/b]
http://www.elasticsearch.org/tutorials/using-elasticsearch-for-logs/
[b]ElasticSearch[/b]
http://www.boyunjian.com/do/article/s.do?keyword=ElasticSearch&pageno=2
http://www.elasticsearch.cn/guide/reference/setup/installation.html

[b]redis.conf中文版(基于2.4)[/b]
http://www.blogjava.net/wangxinsh55/archive/2012/06/05/380058.html

[b]logstash-elasticsearch-scripts[/b]
https://github.com/crashdump/logstash-elasticsearch-scripts

[b]logstash-tools / elasticsearch[/b]
https://github.com/cnf/logstash-tools/tree/master/elasticsearch

[b]An rsync-like utility using boto's S3 and Google Storage interfaces.[/b]
https://github.com/seedifferently/boto_rsync

[b]大规模日志收集处理项目的技术总结[/b]
http://sdjcw.iteye.com/blog/1814703
[b]Installing-Logstash-Central-Server[/b]
https://support.shotgunsoftware.com/entries/23163863-Installing-Logstash-Central-Server
[b]Elasticsearch InOut Plugin[/b]
https://github.com/crate/elasticsearch-inout-plugin

[b]hadoop-log-management[/b]
http://blog.mgm-tp.com/2010/03/hadoop-log-management-part1/

[b]Configuring and Using Scribe for Hadoop Log Collection[/b]
http://blog.cloudera.com/blog/2008/11/configuring-and-using-scribe-for-hadoop-log-collection/

[b]lucene查询语法详解[/b]
http://01jiangwei01.iteye.com/blog/1463724

[b]用 elasticsearch 和 logstash 为数十亿次客户搜索提供服务[/b]
http://chenlinux.com/2013/10/09/using-elasticsearch-and-logstash-to-serve-billions-of-searchable-events-for-customers/

[b]Template for logstash indexes[/b]
https://gist.github.com/reyjrar/4364225
[b]ElasticSearch config for a write-heavy cluster[/b]
https://gist.github.com/reyjrar/4364063

[b]使用logstash+elasticsearch+kibana快速搭建日志平台[/b]
http://www.cnblogs.com/buzzlight/p/logstash_elasticsearch_kibana_log.html

[b]分布式搜索elasticsearch------索引修复[/b]
http://blog.youkuaiyun.com/laigood/article/details/8296678

[b]Indexing and searching Weblogic logs using Logstash and Graylog2[/b]
https://kuther.net/blog/indexing-and-searching-weblogic-logs-using-logstash-and-graylog2
[b]用ElasticSearch和Protovis实现数据可视化[/b]
http://chenlinux.com/2012/11/18/data-visualization-with-elasticsearch-and-protovis/
内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值