CodeForces 446-A.DZY Loves Sequences

解决一个关于序列操作的问题,找出最长的子序列,允许通过修改一个元素使其变为任意整数,从而形成递增序列。输入包含序列长度和序列值,输出修改后的最长子序列长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

C. DZY Loves Sequences
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

DZY has a sequence a, consisting of n integers.

We'll call a sequence ai, ai + 1, ..., aj (1 ≤ i ≤ j ≤ n) a subsegment of the sequence a. The value (j - i + 1) denotes the length of the subsegment.

Your task is to find the longest subsegment of a, such that it is possible to change at most one number (change one number to any integer you want) from the subsegment to make the subsegment strictly increasing.

You only need to output the length of the subsegment you find.

Input

The first line contains integer n (1 ≤ n ≤ 105). The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109).

Output

In a single line print the answer to the problem — the maximum length of the required subsegment.

Sample test(s)
input
6
7 2 3 1 5 6
output
5
Note

You can choose subsegment a2, a3, a4, a5, a6 and change its 3rd element (that is a4) to 4.


#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int a[100010];
int dp_left[100010],dp_right[100010];
int main()
{
    int n;
    while(scanf("%d",&n)!=EOF)
    {
        memset(dp_left,0,sizeof(dp_left));
        memset(dp_right,0,sizeof(dp_right));
        scanf("%d",&a[1]);
        if(n == 1)
        {
            printf("1\n");
            continue;
        }
        else
        {
            dp_left[1] = 1;
            for(int i = 2;i <= n;i++)
            {
                scanf("%d",&a[i]);
                if(a[i] > a[i-1]) dp_left[i] = dp_left[i-1]+1;
                else dp_left[i] = 1;
            }
            dp_right[n] = 1;
            for(int i = n-1;i >= 1;i--)
            {
                if(a[i] < a[i+1]) dp_right[i] = dp_right[i+1]+1;
                else dp_right[i] = 1;
            }
            int m = -99999;
            a[0] = 0;a[n+1] = 1000000010;
            for(int i = 1;i <= n;i++)
            {
                int t = dp_left[i-1]+dp_right[i+1]+1;
                if(a[i+1]-a[i-1]<=1) t = max(dp_left[i],dp_right[i])+1;
                m = max(m,t);
            }
            printf("%d\n",m);
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值