从零开始的无人驾驶 01:Lanes Finding with Computer Vision

本文介绍如何利用计算机视觉进行道路检测,包括摄像头校正、图像失真校正、色彩空间转换、Canny边缘检测、霍夫变换、透视变换及滑动窗口等步骤,最终确定车道线的位置和曲率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

利用计算机视觉进行道路检测,一般包括6部分:摄像头校正(camera calibration)、图像失真校正(distortion correction)、色彩/梯度二值化(color/gradient threshold)、视角转换 Perspective transform 、行道线检测(Detect lane lines)、 道路弯度测量(Determine the lane curvature)

Calibration 校正

首先要对失真的程度进行测量,然后根据measurement的结果进行undistort


这个东西叫做chessboard pattern, 用的时候从不同的角度拍这个chessboard,利用的是每个方块的corner去校正 (图像要记得转成灰度图)

得到的结果其实只跟拍照的相机有关。对于每个的镜头,要单独做一遍这种校正。

Distorition 图像失真

理论上,只要不是针孔摄像机,基本都会存在图像失真的问题(透镜成像更快点,针孔相机这点上比不了)

图像失真会影响到道路检测(将直线判断成曲线),车辆检测(用CNN检测的时候,识别出来的车比实际更大或者更小)

由透镜引起的失真主要是两个:

  • 径向畸变(Radial Distortion)
    原因是光线穿过透镜的边缘时发生的偏转大于穿过中心发生的偏转

  • 切线畸变(Tangential Distortion)

    原因是光线穿过透镜之后并没有垂直打在成像平面上

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值