[Codeforces 721E]Road to Home

本文介绍了一道关于在路灯照射区间内最大化歌唱数量的问题,通过动态规划(DP)结合单调队列优化算法实现高效求解。文章详细阐述了解题思路与C++代码实现。

题目大意:有一条长为l的公路(可看为数轴),n盏路灯,每盏路灯有照射区间且互不重叠,有个人要走过这条公路,他只敢在路灯照射的地方唱歌,固定走p唱完一首歌,歌曲必须连续唱否则就要至少走t才能继续唱。问你最多能唱几首歌?

解题思路:一道dp的题目。

首先有一个结论:对于一段区间,你能唱几首歌就唱几首歌。

因为如果你少唱一首歌,在下个区间最多也就多唱一首歌,与你在前面唱这首歌是一样的。

所以我们设f[i]表示前i个区间最多唱的歌的数量,g[i]表示在f[i]的前提下,最早的停止唱歌的位置。

很显然有$f[i]=max \{ f[j]+\lfloor\frac{(r[i]-max(g[j]+t,l[i]))}{p}\rfloor \}$,$g[i]=min\{ r[i]-(r[i]-max(g[j]+t,l[i]))\mod p \}$        ($j<i$)。

这样的话时间复杂度就是$O(n^2)$,难以接受。

注意到f和g都是满足单调性的(f很显然,g的话,总不可能唱第2首歌比唱第1首歌还前面),所以容易想到单调队列。

这样时间复杂度就优化到$O(n)$。

具体单调队列的操作详见代码。

C++ Code:

#include<cstdio>
#include<cstring>
#include<cctype>
struct Struct{
	int f,g;
}q[100005];
int l,n,p,t,head,tail;
inline int max(int a,int b){return a>b?a:b;}
inline int readint(){
	char c=getchar();
	for(;!isdigit(c);c=getchar());
	int d=0;
	for(;isdigit(c);c=getchar())
	d=(d<<3)+(d<<1)+(c^'0');
	return d;
}
int main(){
	l=readint(),n=readint(),p=readint(),t=readint();
	q[0]=(Struct){0,-0x3f3f3f3f};
	head=0,tail=0;
	int ans=0;
	while(n--){
		int x=readint(),y=readint();
		int nans=0,ng=0;
		head?--head:1;
		while(head<=tail){
			if(q[head].g+p+t>y)break;
			int ff=q[head].f+(y-max(q[head].g+t,x))/p,
			gg=y-(y-max(q[head].g+t,x))%p;
			if(ff>nans||ff==nans&&gg<ng)nans=ff,ng=gg;
			++head;
		}
		if(ans<nans){
			ans=nans;
			q[++tail]=(Struct){nans,ng};
		}
	}
	return!printf("%d\n",ans);
}

转载于:https://www.cnblogs.com/Mrsrz/p/8157677.html

### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值