Deep visual domain adaptation: A survey

difference between one step and multi-step

请添加图片描述
请添加图片描述
请添加图片描述

Class criterion

soft label

soft max

metric learning

(constructed the semantic alignment loss and the separation loss accordingly)请添加图片描述

MMD

请添加图片描述
请添加图片描述

Architecture criterion

adaptive batch normalization (BN)
请添加图片描述
weak- related weight
请添加图片描述
请添加图片描述
请添加图片描述
Domain- guided dropout
it mutes non-related neurons for each domain.
(pseudo labels and attribute representation)

Geometric criterion:

This criterion assumes that the relationship of geometric structures can reduce the domain shift

DLID generates in- termediate datasets, starting with all the source data samples and gradually replacing source data with target data

Adversarial-based approaches

请添加图片描述
请添加图片描述

Reconstruction-based approaches

请添加图片描述
请添加图片描述

Multi-step domain adaptation

Representation-based approaches freeze the previously trained network and use their intermediate representations as input to the new network.
请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值