

Abstract
continual learning+ unsupervised topic modeling《Lifelong machine learning for natural language processing, EMNLP2016》《Topic modeling using topics from many domains, lifelong learning and big data, ICML2014》
难点data sparsity(in a small collection of short documents and thus, generate incoherent topics and sub-optimal document representations);from several sources to deal with the sparse data;
Introduction
continual learning for supervised NLP tasks

Conclusion
a stream of document collections; 通过information retrieval, topic coherence and generalization
Key points: 什么是unsupervised topic modeling, discover topics from document collections; 一种写结合continual learning的论文范式;
code开源

本文探讨了终身学习在自然语言处理中的应用,特别是在无监督主题建模领域,旨在解决小规模短文本集合带来的数据稀疏性问题,通过信息检索、主题连贯性和泛化能力提升文档表示的质量。
1801

被折叠的 条评论
为什么被折叠?



