import numpy as np
import pandas as pd
R = np.array([[4, 0, 2, 0, 1], [0, 2, 3, 0, 0], [1, 0, 2, 4, 0], [5, 0, 0, 3, 1], [0, 0, 1, 5, 1], [0, 3, 2, 4, 1]])
print(len(R))
"""
@输入参数:
R: M*N的评分矩阵
K: 隐特征向量维度
max_iter:最大迭代次数
alpha:步长
lamda:正则化系数
@输出:
分解之后的P,Q
P:初始化用户特征矩阵M*K
Q:初始化物品特征矩阵N*K
"""
K = 50
max_iter = 5000
alpha = 0.0002
lamda = 0.0001
def LFM_grad_desc(R, K=2, max_iter=1000, alpha=0.0001, lamda=0.005):
M = len(R)
N = len(R[0])
P = np.random.rand(M, K)
Q = np.random.rand(N, K)
Q = Q.T
for step in range(max_iter):
for u in range(M):
for i in range(N):
if R[u][i] > 0:
eui = np.dot(P[u, :], Q[:, i]) - R[u][i]
for k in range(K):
P[u][k] = P[u][k] - alpha * (2 * eui * Q[k][i] + 2 * lamda * P[u][k])
Q[k][i] = Q[k][i] - alpha * (2 * eui * P[u][k] + 2 * lamda * Q[k][i])
predR = np.dot(P, Q)
cost = 0
for u in range(M):
for i in range(N):
if R[u][i] > 0:
cost += (np.dot(P[u, :], Q[:, i]) - R[u][i]) ** 2
for k in range(K):
cost += lamda * (P[u][k] ** 2 + Q[k][i] ** 2)
if cost < 0.001:
break
return P, Q.T, cost
p, q, cost = LFM_grad_desc(R, K, max_iter, alpha, lamda)
print(p)
print(q)
print(cost)
pop =p.dot(q.T)
print(pop)
print(R)