homework1_ZhankunLuo

This is Zhankun Luo's homework for Pattern Recognition course Fall 2018. It covers problem sets and experiments related to feature classification, Mahalanobis distance, and classifier performance. Key findings include the classification of a feature vector, drawing Mahalanobis distance curves, and analyzing the impact of varying class parameters on classifier errors." 111793236,10293401,DS18B20温度传感器操作指南:读取与转换温度数据,"['温度传感器', 'DS18B20', '单片机编程', '嵌入式开发', '硬件接口']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Zhankun Luo

PUID: 0031195279

Email: luo333@pnw.edu

Fall-2018-ECE-59500-009

Instructor: Toma Hentea

Homework 1

Problem

Problem 2.7

(a) classify the feature vector [1.6; 1.5]
%% Problem 2.7 : calculate parameters
sigma = [1.2 0.4; 0.4 1.8];
mu1 = [0.1; 0.1];
mu2 = [2.1; 1.9];
mu3 = [-1.5; 1.9];
w1 = sigma \ mu1;
w2 = sigma \ mu2;
w3 = sigma \ mu3;
w10 = log(1/3) - 0.5 * mu1' * w1;
w20 = log(1/3) - 0.5 * mu2' * w2;
w30 = log(1/3) - 0.5 * mu3' * w3;

%% get exact value of g_i(x) of x
x = [1.6; 1.5];
g1 = w1' * x + w10
g2 = w2' * x + w20
g3 = w3' * x + w30
result
g1 =   -0.9321
g2 =    0.1279
g3 =   -4.4611
conclusion

g 2 ( x ) > g 1 ( x ) ; g 2 ( x ) > g 3 ( x ) g_2(x) > g_1(x) ; g_2(x) > g_3(x) g2(x)>g1(x);g2(x)>g3(x) ==> P ( ω 2 ∣ x ) > P ( ω 1 ∣ x ) , P ( ω 3 ∣ x ) P(\omega_2|x) > P(\omega_1|x), P(\omega_3|x) P(ω2x)>P(ω1x),P(ω3x)

Thus x x x belongs to the second class: x → ω 2 x \rightarrow \omega_2 xω2

(b) draw the curves of equal Mahalanobis distance from [2.1; 1.9]
%% Problem 2.7 (b)
%  draw the curves of equal Mahalanobis distance from [2.1; 1.9] 
x = -2:0.2:6;
y = -2:0.2:6;
mu = [2.1; 1.9];
sigma = [1.2 0.4; 0.4 1.8];
[X,Y] = meshgrid(x,y);
vector(:, :, 1) = X - mu(1) * ones(41, 41);
vector(:, :, 2) = Y - mu(2) * ones(41, 41);

for i = 1:41
    for j = 1:41
        temp = vector(i, j, :);
        Temp = reshape(temp, 2, 1);
        tempZ = sqrt(Temp' * (sigma \ Temp));
        Z(i, j) = tempZ;
    end
end
figure
contour(X, Y, Z, 'ShowText', 'on')

problem2_7_2
problem2_7_2

Curves of equal Mahalanobis distance from [2.1; 1.9]

Problem 2.8

%% Problem 2.8 : calculate parameters
sigma = [0.3 0.1 0.1; 0.1 0.3 -0.1; 0.1 -0.1 0.3];
mu1 = [0; 0; 0];
mu2 = [0.5; 0.5; 0.5];
w1 = sigma \ mu1;
w2 = sigma \ mu2;
w10 = log(1/2) - 0.5 * mu1' * w1;
w20 = log(1/2) - 0.5 * mu2' * w2;

%% get coefficients of the equation describing the decision surface
w = w1 - w2
w0 = w10 - w20
result
w =
    0.0000
   -2.5000
   -2.5000
w0 =
    1.2500
conclusion

g 1 ( x ) − g 2 ( x ) = [ w 1 T x + w 10 ] − [ w 2 T x + w 20 ] = 0 g_1(x) - g_2(x) = [w_1^T x + w_{10}] - [w_2^T x + w_{20}] = 0 g1(x)g2(x)=[w1Tx+w10][w2Tx+w20]=0

There w i = Σ − 1 μ i ,   w i 0 = l n ( P ( ω i ) ) − 1 2 μ i T Σ − 1 μ i w_i = \Sigma^{-1} \mu_i, \ w_{i0} = ln(P(\omega_i)) - \frac{1}{2}\mu_i^T \Sigma^{-1} \mu_i wi=Σ1μi, wi0=ln(P(ωi))21μiTΣ1μi

g 1 ( x ) − g 2 ( x ) = ( w 1 − w 2 ) T x + [ − 0.5 μ 1 T w 1 + 0.5 μ 2 T w 2 ] + l n ( P ( ω 1 ) P ( ω 2 ) ) = 0 g_1(x) - g_2(x) = (w_1 - w_2)^T x + [- 0.5\mu_1^T w_1 + 0.5\mu_2^T w_2] + ln(\frac{P(\omega_1)}{P(\omega_2)}) = 0 g1(x)g2(x)=(w1w2)Tx+[0.5μ1Tw1+0.5μ2Tw2]+ln(P(ω2)P(ω1))=0

Now ( w 1 − w 2 ) T = [ 0 , − 2.5 , − 2.5 ] ,   [ − 0.5 μ 1 T w 1 + 0.5 μ 2 T w 2 ] = 1.25 (w_1 - w_2)^T = [0, -2.5, -2.5], \ [- 0.5\mu_1^T w_1 + 0.5\mu_2^T w_2] = 1.25 (w1w2)T=[0,2.5,2.5], [0.5μ1Tw1+0.5μ2Tw2]=1.25

Thus, the equation describing the decision surface is

− 2.5 x 2 + ( − 2.5 ) x 3 + 1.25 + l n ( P ( ω 1 ) P ( ω 2 ) ) = 0 -2.5x_2 + (-2.5)x_3 +1.25 + ln(\frac{P(\omega_1)}{P(\omega_2)}) = 0 2.5x2+(2.5)x3+1.25+ln(P(ω2)P(ω1))=0

Experiment

experiment 2.1

%% Experiment 2.1
m = [ 1 7 15; 1 7 1];
S(:,:,1) = [12 0;0 1];
S(:,:,2) = [8 3;3 2];
S(:,:,3) = [2 0;0 2];
P1 = [1.0/3 1.0/3 1.0/3]';  % three equiprobable classes
P2 = [0.6 0.3 0.1]';        % a priori probabilities of the classes are given
N=1000;
%% when Vector of P = [1/3 1/3 1/3]'
[X1,y1] = gen_gauss(m,S,P1,N); figure(1); plot_data(X1,y1,m);
% title('P = [1/3; 1/3; 1/3]')

%% when Vector of P = [0.6 0.3 0.1]';
[X2,y2] = gen_gauss(m,S,P2,N); figure(2); plot_data(X2,y2,m);
% title('P = [0.6; 0.3; 0.1]')

exp2_1_1

When Vector of P = [1/3; 1/3; 1/3]
exp2_1_2

When Vector of P = [0.6; 0.3; 0.1]

experiment 2.2

%% Experiment 2.2 
m=[ 1 12 16; 1 8 1];
S(:,:,1) = 4 * [1 0;0 1];
S(:,:,2) = 4 * [1 0;0 1];
S(:,:,3) = 4 * [1 0;0 1];
P = [1.0/3 1.0/3 1.0/3]';
N = 1000;
%% the Bayesian, the Euclidean, and the Mahalanobis classifiers on X
[X,y] = gen_gauss(m, S, P, N); figure(1); plot_data(X, y, m);
z = bayes_classifier(m, S, P, X);
[clas_error_bayes, percent_error] = compute_error(y, z)
z = euclidean_classifier(m, X);
[clas_error_euclidean, percent_error] = compute_error(y, z)
z = mahalanobis_classifier(m, S, X);
[clas_error_mahalanobis, percent_error] = compute_error(y, z)

exp2_2

result
% the Bayesian classifier
clas_error_bayes =     9
percent_error =    0.0090
% the Euclidean classifier
clas_error_euclidean =     9
percent_error =    0.0090
% the Mahalanobis classifier
clas_error_mahalanobis =     9
percent_error =    0.0090
conclusion

When

  • covariance matrices S1 = S2 = S3 = kI (k>0)
  • three equiprobable classes modeled by normal distributions

==> Errors of the Bayesian, the Euclidean, and the Mahalanobis classifiers Equal

experiment 2.4

%% Experiment 2.4 
m=[ 1 8 13; 1 6 1];
S(:,:,1) = 6 * [1 0;0 1];
S(:,:,2) = 6 * [1 0;0 1];
S(:,:,3) = 6 * [1 0;0 1];
P = [1.0/3 1.0/3 1.0/3]';
N = 1000;
%% the Bayesian, the Euclidean, and the Mahalanobis classifiers on X
[X,y] = gen_gauss(m, S, P, N); figure(3); plot_data(X, y, m);
z = bayes_classifier(m, S, P, X);
[clas_error_bayes, percent_error] = compute_error(y, z)
z = euclidean_classifier(m, X);
[clas_error_euclidean, percent_error] = compute_error(y, z)
z = mahalanobis_classifier(m, S, X);
[clas_error_mahalanobis, percent_error] = compute_error(y, z)

exp2_4

result
% the Bayesian classifier
clas_error_bayes =    80
percent_error =    0.0801
% the Euclidean classifier
clas_error_euclidean =    80
percent_error =    0.0801
% the Mahalanobis classifier
clas_error_mahalanobis =    80
percent_error =    0.0801
conclusion

When centers of classes are too close: (comparing to experiment 2.4)

errors of classifiers become Larger.

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值