Fat brother and Maze are playing a kind of special (hentai) game in the clearly blue sky which we can just consider as a kind of two-dimensional plane. Then Fat brother starts to draw N starts in the sky which we can just consider each as a point. After he draws these stars, he starts to sing the famous song “The Moon Represents My Heart” to Maze.
You ask me how deeply I love you,
How much I love you?
My heart is true,
My love is true,
The moon represents my heart.
…
But as Fat brother is a little bit stay-adorable(呆萌), he just consider that the moon is a special kind of convex quadrilateral and starts to count the number of different convex quadrilateral in the sky. As this number is quiet large, he asks for your help.
InputThe first line of the date is an integer T, which is the number of the text cases.
Then T cases follow, each case contains an integer N describe the number of the points.
Then N lines follow, Each line contains two integers describe the coordinate of the point, you can assume that no two points lie in a same coordinate and no three points lie in a same line. The coordinate of the point is in the range[-10086,10086].
1 <= T <=100, 1 <= N <= 30
For each case, output the case number first, and then output the number of different convex quadrilateral in the sky. Two convex quadrilaterals are considered different if they lie in the different position in the sky.
2 4 0 0 100 0 0 100 100 100 4 0 0 100 0 0 100 10 10
Case 1: 1 Case 2: 0又是一道数学题→ →。。可怕
由A-->B-->C-->A 按逆时针方向转。(行列式书写要求)
设三角形的面积为S
则S=(1/2)*(下面行列式)
|x1 y1 1|
|x2 y2 1|
| x3 y3 1|
S=(1/2)*(x1y2*1+x2y3*1+ x3y1*1-x1y3*1-x2y1*1-x3y2*1)
即用三角形的三个顶点坐标求其面积的公式为:
S=(1/2)*(x1y2+x2y3+x3y1-x1y3-x2y1-x3y2)
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
struct node
{
int x,y;
}a[1234];
int flag;
double SS(node a,node b,node c)
{
double s=a.x*b.y+b.x*c.y+c.x*a.y-a.x*c.y-c.x*b.y-b.x*a.y;//通过三点的坐标计算三角形面积
return s;
}
int OK(node a,node b,node c,node d)
{
double s1=fabs(SS(a,b,c));
double s2=fabs(SS(a,b,d))+fabs(SS(a,c,d))+fabs(SS(b,c,d));
if(s1==s2) return 1;
else return 0;
}
int Judge(node a,node b,node c,node d)
{
if(OK(a,b,c,d)) return 0;
if(OK(a,b,d,c)) return 0;
if(OK(a,d,c,b)) return 0;
if(OK(d,c,b,a)) return 0;
return 1;
}
int main()
{
int t;
scanf("%d",&t);
int count=0;
while(t--)
{
count++;
int n;
scanf("%d",&n);
int i,j,k,l;
for(i=0;i<=n-1;i++)
{
scanf("%d%d",&a[i].x,&a[i].y);
}
int ans=0;
flag=0;
for(i=0;i<=n-1;i++)
{
for(j=i+1;j<=n-1;j++)
{
for(k=j+1;k<=n-1;k++)
{
for(l=k+1;l<=n-1;l++)
{
if(Judge(a[i],a[j],a[k],a[l]))
ans++;
}
}
}
}
printf("Case %d: %d\n",count,ans);
}
return 0;
}
本文介绍了一种算法,用于计算给定点集可以构成的不同凹四边形的数量。通过判断四点是否能形成凹四边形,并利用三角形面积计算公式进行验证。
5630

被折叠的 条评论
为什么被折叠?



