300. Longest Increasing Subsequence
- Total Accepted: 55308
- Total Submissions: 149684
- Difficulty: Medium
- Contributors: Admin
Given an unsorted array of integers, find the length of longest increasing subsequence.
For example,
Given [10, 9, 2, 5, 3, 7, 101, 18]
,
The longest increasing subsequence is [2, 3, 7, 101]
, therefore the length is 4
. Note that there may be more than one LIS combination, it is only necessary for you to return the length.
Your algorithm should run in O(n2) complexity.
Follow up: Could you improve it to O(n log n) time complexity?
解题思路:
令数组为a[n]。
设以数组中第i个数为结尾的最长上升子序列的长度为d[i]。则d[i]=max(d[j]+1),(0<=j<i&&a[j]<a[i])。
代码展示:
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
vector<int> ans;
int n=nums.size();
if(!n) return 0;
ans.push_back(1);
int ans_max=1;
for(int i=1;i<n;i++)
{
int tmp_max=0;
for(int j=0;j<i;j++)
{
if(nums[j]<nums[i])
{
tmp_max=max(tmp_max,ans[j]);
}
}
ans.push_back(tmp_max+1);
ans_max=max(ans_max,tmp_max+1);
}
return ans_max;
}
};