Phalanx (二维矩阵dp)

本文介绍了一种算法,用于解决寻找给定矩阵中最大对称子矩阵的问题。通过对比矩阵元素,从每个点出发向上和向右匹配,更新最大对称子矩阵的尺寸。该算法适用于军事方阵等特殊需求场景。

Today is army day, but the servicemen are busy with the phalanx for the celebration of the 60th anniversary of the PRC. 
A phalanx is a matrix of size n*n, each element is a character (a~z or A~Z), standing for the military branch of the servicemen on that position. 
For some special requirement it has to find out the size of the max symmetrical sub-array. And with no doubt, the Central Military Committee gave this task to ALPCs. 
A symmetrical matrix is such a matrix that it is symmetrical by the “left-down to right-up” line. The element on the corresponding place should be the same. For example, here is a 3*3 symmetrical matrix: 
cbx 
cpb 
zcc

Input

There are several test cases in the input file. Each case starts with an integer n (0<n<=1000), followed by n lines which has n character. There won’t be any blank spaces between characters or the end of line. The input file is ended with a 0.

Output

Each test case output one line, the size of the maximum symmetrical sub- matrix. 

Sample Input

3
abx
cyb
zca
4
zaba
cbab
abbc
cacq
0

Sample Output

3
3

思路:

对每个点对它上面和右边的点进行匹配,如果匹配量大于右上角记录的矩阵最大的值,那么这个值就+1,否则就等于匹配量

代码:

#include<iostream>
using namespace std;
const int maxn=1005;
int dp[maxn][maxn];
char a[maxn][maxn];
int main()
{
	int n,ans;
	while(cin>>n,n)
	{
		ans=1;
		for(int i=0;i<n;i++)
		  for(int j=0;j<n;j++)
		     cin>>a[i][j];
		for(int i=0;i<n;i++)
		  for(int j=n-1;j>=0;j--)
		  {
		  	  dp[i][j]=1;
		  	  if(i==0||j==n-1) continue;
		  	  int k=dp[i-1][j+1];
		  	  for(int s=1;s<=k;s++)
		  	  {
		  	  	 if(a[i-s][j]==a[i][j+s]) dp[i][j]++;
		  	  	 else break;
			  }
			  ans=max(ans,dp[i][j]);
		  }
	    cout<<ans<<endl;
	}
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小鱼爱吃火锅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值