[leetcode] 198. House Robber @ python

本文探讨了一种专业抢劫者如何在不触动报警系统的情况下,从一排房屋中窃取最大金额的问题。通过动态规划的方法,我们定义了状态转移方程,实现了在O(n)的时间复杂度和O(n)的空间复杂度下解决问题。文章提供了详细的算法解释和Python代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原题

You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.

Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.

Example 1:

Input: [1,2,3,1]
Output: 4
Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).
Total amount you can rob = 1 + 3 = 4.
Example 2:

Input: [2,7,9,3,1]
Output: 12
Explanation: Rob house 1 (money = 2), rob house 3 (money = 9) and rob house 5 (money = 1).
Total amount you can rob = 2 + 9 + 1 = 12.

解法

动态规划. 初始化dp[i]为到nums[i]时最多能抢到的钱, 状态转移方程:

dp[i] = max(dp[i-1], dp[i-2] + nums[i])

Time: O(n)
Space: O(n)

代码

class Solution:
    def rob(self, nums: 'List[int]') -> 'int':
        # base case
        if not nums: return 0
        if len(nums) <= 2: return max(nums)
        
        dp = [0]*len(nums)
        dp[0], dp[1] = nums[0], max(nums[0], nums[1])
        for i in range(2, len(nums)):
            dp[i] = max(dp[i-1], dp[i-2] + nums[i])
        return dp[-1]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值