LeetCode:House Robber

本文探讨了一个经典的动态规划问题——打家劫舍。该问题要求在一个整数数组中找到最大的非相邻元素之和,模拟了抢劫一排房屋但不能连续抢劫相邻两户的情况。文章提供了两种解决方案,一种使用数组进行动态规划,另一种则是经过空间优化后的解决方案。

House Robber

Total Accepted: 41584  Total Submissions: 132317  Difficulty: Easy

You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, 

the only constraint stopping you from robbing each of them is that adjacent houses have security system connected 

and it will automatically contact the police if two adjacent houses were broken into on the same night.

Given a list of non-negative integers representing the amount of money of each house, 

determine the maximum amount of money you can rob tonight without alerting the police.

Hide Tags

Hide Similar Problems

思路:

1.假设nums=[ 3 2 6 5 6 3]

dp[0]=3,

dp[1]=3;

dp[2]=max(nums[1],nums[0]+nums[2]);

...

dp[i]=max(dp[i-2]+nums[i], dp[i-1])

2.得到 dp=[3 3 9 9 15 15]

code:

class Solution {
public:
    int rob(vector<int>& nums) {
        int len = nums.size();
        if(0==len) return 0;
        int dp[len];
        if(len>0) dp[0] = nums[0];
        if(len>1) dp[1] = max(nums[0],nums[1]);
        for(int i=2;i<len;i++)
            else dp[i]=max(dp[i-2]+nums[i],dp[i-1]);
        return dp[len-1];
    }
};

空间优化后:

class Solution {
public:
    int rob(vector<int>& nums) {
        int len = nums.size();
        if(0==len) return 0;
        int preN=0;
	int preY=0;
        for(int i=1;i<len;i++){
		int tmp = preY;
		preN = max(preN, preY);
		preY = tmp + nums[i];
	}  
        return max(preN, preY);
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值