原题
A move consists of taking a point (x, y) and transforming it to either (x, x+y) or (x+y, y).
Given a starting point (sx, sy) and a target point (tx, ty), return True if and only if a sequence of moves exists to transform the point (sx, sy) to (tx, ty). Otherwise, return False.
Examples:
Input: sx = 1, sy = 1, tx = 3, ty = 5
Output: True
Explanation:
One series of moves that transforms the starting point to the target is:
(1, 1) -> (1, 2)
(1, 2) -> (3, 2)
(3, 2) -> (3, 5)
Input: sx = 1, sy = 1, tx = 2, ty = 2
Output: False
Input: sx = 1, sy = 1, tx = 1, ty = 1
Output: True
Note:
sx, sy, tx, ty will all be integers in the range [1, 10^9].
解法
递归.
先找出base case: 由于sx, sy都是正数, 转化之后的tx, ty不可能小于sx, sy. 当tx < sx或ty < sy时, 返回False.
(x, y) 可以转化为 (x, kx + y), 也可以转化为(ky+x, y), 所以当tx == sx时, 如果y的变化值是x的倍数, 返回True. 反之亦然.
当x和y两者都变大了, 我们从tx, ty反向推导sx, sy. 当tx > ty时, tx是ty经过若干转化而得, 因此求tx除以ty的余数, 当tx < ty时, ty是tx经过若干转化而得, 因此求ty除以tx的余数. 如此进行递归.
Time: O(n)
Space: O(1)
代码
class Solution(object):
def reachingPoints(self, sx, sy, tx, ty):
"""
:type sx: int
:type sy: int
:type tx: int
:type ty: int
:rtype: bool
"""
# base case
if tx < sx or ty < sy:
return False
if tx == sx and (ty - sy)%sx == 0:
return True
if ty == sy and (tx - sx)%sy == 0:
return True
# recursion
if tx < ty:
return self.reachingPoints(sx, sy, tx, ty%tx)
else:
return self.reachingPoints(sx, sy, tx%ty, ty)