原题
https://leetcode.com/problems/4sum-ii/
Given four lists A, B, C, D of integer values, compute how many tuples (i, j, k, l) there are such that A[i] + B[j] + C[k] + D[l] is zero.
To make problem a bit easier, all A, B, C, D have same length of N where 0 ≤ N ≤ 500. All integers are in the range of -228 to 228 - 1 and the result is guaranteed to be at most 231 - 1.
Example:
Input:
A = [ 1, 2]
B = [-2,-1]
C = [-1, 2]
D = [ 0, 2]
Output:
2
Explanation:
The two tuples are:
- (0, 0, 0, 1) -> A[0] + B[0] + C[0] + D[1] = 1 + (-2) + (-1) + 2 = 0
- (1, 1, 0, 0) -> A[1] + B[1] + C[0] + D[0] = 2 + (-1) + (-1) + 0 = 0
解法1
构建一个字典, 遍历A和B, 记录a+b的值和个数, 然后遍历C和D, 查看c+d的相反数是否在字典里, 如果在就累加计数.
Time: 2*O(n)
Space: O(1)
代码
class Solution(object):
def fourSumCount(self, A, B, C, D):
"""
:type A: List[int]
:type B: List[int]
:type C: List[int]
:type D: List[int]
:rtype: int
"""
# use hashtable to store the number and count
h = {}
for a in A:
for b in B:
h[a+b] = h.get(a+b, 0) + 1
count = 0
for c in C:
for d in D:
if -(c+d) in h:
count += h[-(c+d)]
return count
解法2
构造两个字典, 分别储存a+b, c+d的和与对应的计数, 然后遍历字典, 排列组合求解.
代码
class Solution(object):
def fourSumCount(self, A, B, C, D):
"""
:type A: List[int]
:type B: List[int]
:type C: List[int]
:type D: List[int]
:rtype: int
"""
d1 = collections.defaultdict(int)
d2 = collections.defaultdict(int)
for a in A:
for b in B:
d1[a+b] += 1
for c in C:
for d in D:
d2[c+d] += 1
count = 0
for k in d1:
if -k in d2:
# we found a match
count += d1[k]*d2[-k]
return count