网页也能跑大模型?

image

写在最前

本故事主要介绍在网页上部署模型的来龙去脉,你想问的问题,可能都可以在这里找到答案

在这个 AI 内容生成泛滥的时代,依然有一批人"傻傻"坚持原创,如果您能读到最后,还请点赞或收藏或关注支持下我呗,感谢 ( ̄︶ ̄)↗

能在网页上跑模型吗?

丹尼尔:嘿,蛋兄,你这是要去哪儿遛弯呢?

蛋先生:刚吃完饭,准备散下步消消食

丹尼尔:一起呗。蛋兄,我最近对 AI 有点着迷,突然冒出个念头,你说咱们能不能在网页上跑机器学习模型呢?

蛋先生:这个嘛,确实可以

为什么可以在网页上跑模型?

丹尼尔:这我就纳闷了,一个专门看网页的浏览器,怎么还能“兼职”跑模型呢?蛋兄,快给我讲讲呗

蛋先生:你想啊,一颗种子能不能发芽,得看它有没有适合生存的环境。模型也一样,得有个能跑的“土壤”——runtime,还得有足够的“阳光”和“水”——也就是算力和存储

丹尼尔:哦,我好像有点懂了。但我还是不明白,浏览器是怎么做到这一点的

蛋先生:自从浏览器有了 WebAssembly 之后,它的“胃口”可就大了去了!现在,很多用 C、C++、Rust 等编程语言写的应用,都能编译成 WASM 格式,在浏览器里跑。这样一来,浏览器就能处理更加复杂的计算任务了

丹尼尔:原来如此!也就是说,原来用 C++ 等写的模型 runtime,现在可以直接放进浏览器里,成了模型的“土壤”了!

蛋先生:对头!而且,浏览器的 WebGL、WebGPU 这些技术,还能让你的应用用上 GPU 资源,速度更上一层楼!否则,能跑,但很慢,也没啥意义

丹尼尔:哈哈,我总结一下啊,WebAssembly 让模型有了土壤,WebGL、WebGPU 让算力提升成为可能!

蛋先生:不错不错,总结得挺到位!

为什么要跑在浏览器呢?

蛋先生:那我问你,你为什么想把模型跑在浏览器上呢?

丹尼尔:额~,这~,就觉得挺酷的嘛!不过说实话,我还真没认真想过这个问题。蛋兄,你给说道说道?

蛋先生:来,咱们从请求链路说起。模型部署在浏览器上,是不是就不用请求服务器了?

丹尼尔:那是肯定的

蛋先生:对于客户端,请求没有离开用户设备,这样是不是就可以更好地保护用户隐私了?

丹尼尔:是哦

蛋先生:计算是在浏览器本地进行的,距离用户更近,也没有网络请求的损耗,响应速度通常更快,这样是不是就可以提升用户体验了?

丹尼尔:是哦

蛋先生:还有,模型已经部署在浏览器了,只要应用本身支持离线访问,那是不是就可以离线使用了?

丹尼尔:是哦

蛋先生:对于服务端,因为把计算压力分摊出去了,是不是就可以减轻服务器的计算压力,降低运营成本呢?

丹尼尔:是哦

蛋先生:剩下的你自己琢磨琢磨吧

怎么跑在浏览器呢?

丹尼尔:好嘞,那具体要怎么实现呢?

蛋先生:主流的机器学习框架除了训练模型外,还能部署和推理模型。比如大名鼎鼎的 Tensorflow 就有 tensorflow.js,它可以将模型部署在浏览器端。不过今天我要给你说的是 onnxruntime-web

丹尼尔:onnxruntime-web?这名字听着有点新鲜啊!

蛋先生:onnxruntime-web,可以把这个拆成 onnx,onnxruntime 和 onnxruntime-web 来说

丹尼尔:您继续

蛋先生:onnx 就是个模型格式,就像你存音乐用的 mp3 格式一样,但它存的是机器学习模型;onnxruntime 呢,就是运行这些模型的“播放器”;而 onnxruntime-web,则是让这个“播放器”能在网页上跑起来的神奇工具

丹尼尔:哦,那模型都有哪些格式呢?用这个 onnx 有什么优势呢?

蛋先生:正所谓合久必分,分久必合

丹尼尔:这是要讲三国的节奏吗

蛋先生:各个机器学习框架都有自己的模型格式,在没有 onnx 之前,你得用 tf 来部署 tensorflow 的模型,用 pytorch 来部署 pytorch 的模型。可用户只想部署个模型而已,能不能把问题简单化呢?

丹尼尔:确实

蛋先生:于是就有了 onnx 这个开放标准。各家的模型格式都能转换成这种标准格式,

### 使用大型预训练模型处理数据集 对于使用大型预训练模型来处理数据集,尤其是像YOLOv10这样的先进目标检测模型或者更通用的大规模语言模型如GPT系列,准备工作主要集中在数据整理、环境配置以及具体的调用方法上。 #### 数据准备与清洗 当着手于任何基于深度学习的任务之前,确保拥有高质量的数据至关重要。如果采用网页抓取的方式获取大量未加工的信息作为输入源,则需考虑去除HTML标签并过滤掉无关紧要的内容[^2];而对于特定领域内的私有或半结构化资料来说,可能还需要额外定制化的清理流程以适应下游任务需求。 #### 环境搭建与依赖安装 针对不同类型的预训练模型,首先要建立合适的开发环境。例如,在尝试YOLOv10或其他计算机视觉项目时,应当按照官方文档指示设置Python虚拟环境,并通过pip命令安装必要的库文件和工具包[^1]。与此同时,考虑到GPU加速的重要性,确认已正确配置CUDA驱动程序也是不可或缺的一环。 #### 加载预训练模型 大多数情况下可以直接从Hugging Face等平台下载预先训练好的权重文件用于初始化神经网络架构。以PyTorch为例: ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer model_name = 'bert-base-uncased' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) ``` 这段代码展示了如何轻松加载BERT基础版的分类器及其配套分词器。当然,具体到其他种类的模型(如CLIP、DALL·E),操作过程也会有所差异[^3]。 #### 自定义微调策略 即使是最强大的现成解决方案也难以完全满足个性化业务场景的要求。因此,在初步评估性能之后往往还需进一步调整超参数设定或是引入迁移学习技术以便更好地贴合实际应用场景。特别是面对较小规模的目标域样本时,合理设计验证机制尤为关键。 #### 推理阶段优化 完成上述步骤后即进入部署环节。此时除了关注预测速度外还应重视资源利用率问题。可以通过量化压缩、剪枝等方式减少计算开销而不显著牺牲准确性。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值