INTEGRATING SPRING SECURITY WITH SPRING BOOT WEB

本文介绍如何使用 SpringBoot 快速配置 SpringSecurity,并通过示例演示如何从内存认证过渡到基于 MySQL 数据库的认证管理。
部署运行你感兴趣的模型镜像

Spring Boot provides utilities for quick and easy setup of Spring Security via auto-configuration and Java-based configuration. The getting started guide is quick and easy leads through configuring an in-memory AuthenticationManager in just minutes. Going beyond these examples, this installation will quickly review the getting started guide provided at Spring.io, and conclude with the configuration of a datasource-backed AuthenticationManager that uses Spring Data JPA, and the MySQL database platform.

As usual, for this installment, I’ve created a copy of the code from Part 4 and created a new project called Part 5. It’s committed to Github, ready for cloning.

Updating Dependencies
To install Spring Security, we first need to update our gradle script to include a dependency on spring-boot-starter-security. Update build.gradle to include the following dependency as seen below.

/build.gradle:

1
2
3
4
5
6
7
dependencies {
     compile( "org.springframework.boot:spring-boot-starter-web" )
     compile( "org.springframework.boot:spring-boot-starter-security" )
     compile( "org.thymeleaf:thymeleaf-spring4:2.1.2.RELEASE" )
 
     testCompile( "junit:junit" )
}

Following that, executing a build should pull in our new dependencies.

Creating The Security Configuration
Continuing to lift code from the Spring.io docs for review, below you’ll find the example of the base Java security configuration. We’ll review the important bits after the jump. We’ll create this in the same directory as our other configuration files:

/src/main/java/com.rodenbostel.sample/SecurityConfiguration.java:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
package com.rodenbostel.sample;
 
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.security.authentication.AuthenticationManager;
import org.springframework.security.config.annotation.authentication.builders.AuthenticationManagerBuilder;
import org.springframework.security.config.annotation.method.configuration.EnableGlobalMethodSecurity;
import org.springframework.security.config.annotation.web.builders.HttpSecurity;
import org.springframework.security.config.annotation.web.configuration.WebSecurityConfigurerAdapter;
import org.springframework.security.config.annotation.web.servlet.configuration.EnableWebMvcSecurity;
import org.springframework.security.web.util.matcher.AntPathRequestMatcher;
 
@Configuration
@EnableWebMvcSecurity
@EnableGlobalMethodSecurity (prePostEnabled = true )
public class SecurityConfiguration extends WebSecurityConfigurerAdapter {
 
     @Override
     protected void configure(HttpSecurity http) throws Exception {
         http
                 .authorizeRequests().anyRequest().authenticated();
         http
                 .formLogin().failureUrl( "/login?error" )
                 .defaultSuccessUrl( "/" )
                 .loginPage( "/login" )
                 .permitAll()
                 .and()
                 .logout().logoutRequestMatcher( new AntPathRequestMatcher( "/logout" )).logoutSuccessUrl( "/login" )
                 .permitAll();
     }
 
     @Override
     protected void configure(AuthenticationManagerBuilder auth) throws Exception {
         auth.inMemoryAuthentication().withUser( "user" ).password( "password" ).roles( "USER" );
     }
}

As usual, the @Configuration annotation lets Spring know that this file contains configuration information. The next two annotations (@EnableWebMvcSecurity and @EnableGlobalMethodSecurity(prePostEnabled=true)) setup the automatically-configured portions of our security scheme, provided by Spring-Boot. EnableWebMvcSecurity basically pulls in the default SpringSecurity/SpringMVC integration. It’s an extension of the WebMvcConfigurerAdapter, and adds methods for handling and generating CSRF tokens and resolving the logged in user, and configures default AuthenticationManagers and Pre/Post object authorization implementations. The @EnableGlobalMethodSecurity sets up processors for authorization advice that can be added around methods and classes. This authorization advice lets a developer write Spring EL that inspects input parameters and return types.

Our SecurityConfiguration class also extends WebSecurityConfigurerAdapter. In Spring/Spring Boot, Configurer Adapters are classes that construct default bean configurations and contain empty methods which are meant to be overridden. Overriding these methods allow a developer to customize the Web Security Configuration during startup. Typically, the default configurations are constructed, and immediately following, the empty methods are called. If you’ve overridden an empty method, you’re able to inject custom behavior into the default configuration during the startup of the container.

In our case, the two coded parts of our SecurityConfiguration class (two methods named “configure”) are examples of these empty methods meant to be overridden. During container startup, after the HttpSecurity object’s default configuration is specified, our overridden method is called. Here we are able to customize the default configuration by specifying which requests to authorize, and how to route various security-related requests: default success URL, error routing, where to send logouts, etc. Also during container startup, after the AuthenticationManagerBuilder is configured, our configure method is called, and in this case we’re altering the default configuration, giving instructions to the AuthenticationManagerBuilder to build an in-memory AuthenticationManager with a default user credential and role.

You’ll notice in this configuration we’ve specified several URL paths that do not exist. There’s no login page or controller, and no way for a user to interact with the security configuration when the app is started up. Next, we’ll need to construct and wire in a login page to complete our beginning configuration.

Building The Login Page
The login page in the Spring.io sample is very straightforward. Just a simple form with an input for username and password. Let’s build that and review a few key parts.

/src/main/resources/templates/login.html:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
<! DOCTYPE html>
< head >
     < title >Spring Security Example</ title >
</ head >
< body >
< div th:if = "${param.error}" >
     Invalid username and password.
</ div >
< div th:if = "${param.logout}" >
     You have been logged out.
</ div >
< form th:action = "@{/login}" method = "post" >
     < div >< label > User Name : < input type = "text" name = "username" /> </ label ></ div >
     < div >< label > Password: < input type = "password" name = "password" /> </ label ></ div >
     < div >< input type = "submit" value = "Sign In" /></ div >
</ form >
</ body >
</ html >

Most importantly, we have inputs with the names of “username” and “password”. These are the Spring Security defaults. If you’re routing a request to Spring Security to authenticate, these are the parameters on the request that it will be looking for. Next, you’ll also notice that there are Thymeleaf conditionals (th:if) for displaying logout and error messages if they are present in the response parameters during rendering. You’ll also notice the path to this page is “/login”, and the action on this form routes back to “/login” – but we don’t have those registered anywhere…

Registering the Login Action
The path our login form is posting to is the default used by Spring Security. This is where what used to be called the “j_spring_security_check” servlet is listening for requests to authenticate. The request path (where we’re retrieving the login form by issuing a GET to /login) is normally mapped to a controller, but in this case, since we’re using automatically configured features of Spring Boot, we need to specify this mapping in our application configuration. Add the code below to your application configuration. You may notice the use of another @Override method – another hook where we can add logic to customize our application…

/src/main/java/com.rodenbostel.sample.Application.java:

1
2
3
4
@Override
public void addViewControllers(ViewControllerRegistry registry) {
     registry.addViewController( "/login" ).setViewName( "login" );
}

Log In!
Start your server, and try to access the app again. For me, that’s simply visitinghttp://localhost:8080.

Screen Shot 2014-05-30 at 4.59.05 PM

I’m immediately challenged.

If I put in an invalid username or password, we should see an error:

Screen Shot 2014-05-30 at 4.59.27 PM

If I put in the correct credentials (id: user/password: password), we should be able to log in:

Screen Shot 2014-05-30 at 5.00.33 PM

Screen Shot 2014-05-30 at 5.00.38 PM

There’s quite a bit missing here still – let’s take this example a bit further – we’ll wire in components that would make this configuration closer to production ready – an AuthenticationManager backed by JDBC, configurable password encoders, and a UserDetailsService implementation that we can use to manage users.

Beyond The Examples
To begin taking steps closer to this solution being production-ready, we first need to back our app with a database. I’ll be using MySQL. I’ll assume you’ve got it installed and running (if you’re on a mac, I’d use Homebrew to accomplish that.

First, we’ll add the MySQL dependency to our gradle script:

/build.gradle:

1
2
3
4
5
6
7
8
9
dependencies {
     compile( "org.springframework.boot:spring-boot-starter-web" )
     compile( "org.springframework.boot:spring-boot-starter-security" )
     compile( "org.springframework.boot:spring-boot-starter-data-jpa" )
     compile( "org.thymeleaf:thymeleaf-spring4:2.1.2.RELEASE" )
     runtime( 'mysql:mysql-connector-java:5.1.6' )
 
     testCompile( "junit:junit" )
}

Configuring A Datasource
I’ll be calling my schema in MySQL “beyond-the-examples”. I’ll assume you’ve used the same name. Conveniently, Spring Boot Starter projects have an automatically configured property source path. This means that using a properties file for configuration data we’d like to externalize simply requires creating an “application.properties” file and putting it somewhere on the application’s classpath. We’ll create that file now, and add properties that we’ll use to set up our datasource.

/src/main/resources/application.properties:

1
2
3
4
5
6
7
spring.datasource.url=jdbc:mysql: //localhost:3306/beyond-the-examples
spring.datasource.username=root
spring.datasource.password=
spring.datasource.driverClassName=com.mysql.jdbc.Driver
 
spring.jpa.hibernate.dialect= org.hibernate.dialect.MySQLInnoDBDialect
spring.jpa.generate-ddl= false

You can see I’m using the default configuration for MySQL. I wouldn’t recommend that for production.

Next, we’ll build references to these properties in our application’s configuration, so that we can use them to create a datasource bean that we can inject into our security configuration. Update the application configuration file to add these properties:

/src/main/java/com.rodenbostel.sample.Application.java:

1
2
3
4
5
6
7
8
9
10
11
@Value ( "${spring.datasource.driverClassName}" )
private String databaseDriverClassName;
 
@Value ( "${spring.datasource.url}" )
private String datasourceUrl;
 
@Value ( "${spring.datasource.username}" )
private String databaseUsername;
 
@Value ( "${spring.datasource.password}" )
private String databasePassword;

Next create a Datasource @Bean using these properties in the same file.

/src/main/java/com.rodenbostel.sample.Application.java:

1
2
3
4
5
6
7
8
9
10
@Bean
public DataSource datasource() {
     org.apache.tomcat.jdbc.pool.DataSource ds = new org.apache.tomcat.jdbc.pool.DataSource();
     ds.setDriverClassName(databaseDriverClassName);
     ds.setUrl(datasourceUrl);
     ds.setUsername(databaseUsername);
     ds.setPassword(databasePassword);
 
     return ds;
}

Now, we have a datasource configured that we can @Autowire into any of our Spring beans, configuration or otherwise.

Create the Spring Security Tables
The DDL from the Spring.io docs is for HSQLDB. It’s syntax is not compliant with MySQL. Shout out to this guy (http://springinpractice.com/2010/07/06/spring-security-database-schemas-for-mysql) for publishing the MySQL versions of the default Spring Security schema. If you’re using MySQL like me, use the DDL from that blog to create a “users” table and an “authorities” table, then thank him. Since we’ll be properly encoding our passwords, we may want to make that password column a bit wider. Here’s what I ran:

1
create table users (    username varchar (50) not null primary key ,    password varchar (255) not null ,    enabled boolean not null ) engine = InnoDb; create table authorities (    username varchar (50) not null ,    authority varchar (50) not null ,    foreign key (username) references users (username),    unique index authorities_idx_1 (username, authority)) engine = InnoDb;

Building The New Configuration
To start using the new datasource in the security configuration, we first need to wire the datasource bean into our SecurityConfiguration class. Update your SecurityConfiguration file to instruct spring to @Autowire this bean:

/src/main/java/com.rodenbostel.sample.SecurityConfiguration.java:

1
2
@Autowired
private DataSource datasource;

Next, we’re going to make a few significant changes to our AuthenticationManagerBuilder configuration to reference this datasource and a few other things, which I’ll review after the code:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
     @Override
     protected void configure(AuthenticationManagerBuilder auth) throws Exception {
         JdbcUserDetailsManager userDetailsService = new JdbcUserDetailsManager();
         userDetailsService.setDataSource(datasource);
         PasswordEncoder encoder = new BCryptPasswordEncoder();
 
         auth.userDetailsService(userDetailsService).passwordEncoder(encoder);
         auth.jdbcAuthentication().dataSource(datasource);
 
         if (!userDetailsService.userExists( "user" )) {
             List<GrantedAuthority> authorities = new ArrayList<GrantedAuthority>();
             authorities.add( new SimpleGrantedAuthority( "USER" ));
             User userDetails = new User( "user" , encoder.encode( "password" ), authorities);
 
             userDetailsService.createUser(userDetails);
         }
     }
 
 
Prior to this , our AuthenticationManagerBuilder was configured on a single line - we were using an in-memory configuration, and creating a user directly on it.  Here, we’ll use the AuthenticationManagerBuilder to move from using:
 
 
auth.inMemoryAuthentication()

to using:

1
auth.jdbcAuthentication().dataSource(datasource);

Assuming there are already users in the database, believe it or not, that’s all we need to begin using the JDBC-backed AuthenticationManager. The requirement for creating new users and managing existing users is a foregone conclusion. In our case, we’d like to automatically configure a default user on app startup just like we were before. We can get a handle on the automatically configuration (by Spring Boot) UserDetailsService through our AuthenticationManagerBuilder at:

1
auth.getDefaultUserDetailsService();

…but that doesn’t quite do everything we need. On the first line of our updated AuthenticationManagerBuilder configuration method, you can see we’ve created a new instance of one of the provide implementations of UserDetailsService provided by Spring. If you don’t have a reason to customize how you manage users in your system, that is a perfectly suitable implementation, but there are things to consider. Please consult the API docs for more detail (http://docs.spring.io/spring-security/site/docs/3.2.4.RELEASE/apidocs/org/springframework/security/provisioning/JdbcUserDetailsManager.html). After creating the new reference to the JdbcUserDetailsManager, we need to set a reference to our datasource on it. Following that, we add our encoder for storing our passwords securely, and then we use the JdbcUserDetailsManager’s built-in functionality to check to see if our test user exists, and create him if he doesn’t.

Testing Again
Running the application should yield no change in behavior when compared with what we saw earlier. This is desired. What we will see that’s different will be in our database. Startup the app using: "gradle bootRun", and using your favorite database management tool, query the database to see our newly create user and their encoded password:

Screen Shot 2014-05-30 at 5.44.38 PM

Conclusion
I cobbled the information in this post from many sources - some I’ve remembered and have mentioned, and others I have not. I hope putting this information in a single post helps whoever stumbles upon it! That concludes this series of Spring Boot posts, but during the time I’ve been writing these, I’ve come up with two more topics to touch on, mostly surrounding further securing your app (http://www.jasypt.org/) and easier maintenance of your database tables (http://flywaydb.org/). Check back soon!

您可能感兴趣的与本文相关的镜像

Llama Factory

Llama Factory

模型微调
LLama-Factory

LLaMA Factory 是一个简单易用且高效的大型语言模型(Large Language Model)训练与微调平台。通过 LLaMA Factory,可以在无需编写任何代码的前提下,在本地完成上百种预训练模型的微调

内容概要:本文介绍了一种基于蒙特卡洛模拟和拉格朗日优化方法的电动汽车充电站有序充电调度策略,重点针对分时电价机制下的分散式优化问题。通过Matlab代码实现,构建了考虑用户充电需求、电网负荷平衡及电价波动的数学模【电动汽车充电站有序充电调度的分散式优化】基于蒙特卡诺和拉格朗日的电动汽车优化调度(分时电价调度)(Matlab代码实现)型,采用拉格朗日乘子法处理约束条件,结合蒙特卡洛方法模拟大量电动汽车的随机充电行为,实现对充电功率和时间的优化分配,旨在降低用户充电成本、平抑电网峰谷差并提升充电站运营效率。该方法体现了智能优化算法在电力系统调度中的实际应用价值。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事新能源汽车、智能电网相关领域的工程技术人员。; 使用场景及目标:①研究电动汽车有序充电调度策略的设计与仿真;②学习蒙特卡洛模拟与拉格朗日优化在能源系统中的联合应用;③掌握基于分时电价的需求响应优化建模方法;④为微电网、充电站运营管理提供技术支持和决策参考。; 阅读建议:建议读者结合Matlab代码深入理解算法实现细节,重点关注目标函数构建、约束条件处理及优化求解过程,可尝试调整参数设置以观察不同场景下的调度效果,进一步拓展至多目标优化或多类型负荷协调调度的研究。
内容概要:本文围绕面向制造业的鲁棒机器学习集成计算流程展开研究,提出了一套基于Python实现的综合性计算框架,旨在应对制造过程中数据不确定性、噪声干扰面向制造业的鲁棒机器学习集成计算流程研究(Python代码实现)及模型泛化能力不足等问题。该流程集成了数据预处理、特征工程、异常检测、模型训练与优化、鲁棒性增强及结果可视化等关键环节,结合集成学习方法提升预测精度与稳定性,适用于质量控制、设备故障预警、工艺参数优化等典型制造场景。文中通过实际案例验证了所提方法在提升模型鲁棒性和预测性能方面的有效性。; 适合人群:具备Python编程基础和机器学习基础知识,从事智能制造、工业数据分析及相关领域研究的研发人员与工程技术人员,尤其适合工作1-3年希望将机器学习应用于实际制造系统的开发者。; 使用场景及目标:①在制造环境中构建抗干扰能力强、稳定性高的预测模型;②实现对生产过程中的关键指标(如产品质量、设备状态)进行精准监控与预测;③提升传统制造系统向智能化转型过程中的数据驱动决策能力。; 阅读建议:建议读者结合文中提供的Python代码实例,逐步复现整个计算流程,并针对自身业务场景进行数据适配与模型调优,重点关注鲁棒性设计与集成策略的应用,以充分发挥该框架在复杂工业环境下的优势。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值