23. Merge k Sorted Lists

本文介绍两种高效合并K个有序链表的方法:使用优先级队列和两两配对合并。优先级队列方法的时间复杂度为O(Nlogk),空间复杂度为O(k);两两配对合并方法的时间复杂度同样为O(Nlogk),但空间复杂度降低到O(1)。

Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity.

用优先级队列做的

    public ListNode mergeKLists(ListNode[] lists) {
        PriorityQueue<ListNode> queue = new PriorityQueue<ListNode>(new Comparator<ListNode>() {
            @Override
            public int compare(ListNode o1, ListNode o2) {
                return o1.val - o2.val;
            }
        });

        for (ListNode head : lists){
            if (head != null) queue.add(head);
        }

        ListNode dummy = new ListNode(-1);
        ListNode head = dummy;
        while (!queue.isEmpty()){
            ListNode node = queue.poll();
            head.next = new ListNode(node.val);
            head = head.next;

            node = node.next;
            if (node == null) continue;
            queue.add(node);
        }

        return dummy.next;
    }

解出来了 但是时间复杂度需要知道 正好solution里面有对于这种解法的分析

Complexity Analysis
  • Time complexity : O(Nlogk) where k is the number of linked lists.
    • The comparison cost will be reduced to O(logk) for every pop and insertion to priority queue. But finding the node with the smallest value just costs O(1) time.
    • There are N nodes in the final linked list.
  • Space complexity :
    • O(n) Creating a new linked list costs O(n) space.
    • O(k) The code above present applies in-place method which cost O(1) space. And the priority queue (often implemented with heaps) costs O(k) space (it's far less than N in most situations).

时间复杂度O(Nlogk)的还有下面这种

Intuition & Algorithm
Pair up k lists and merge each pair.
After the first pairing, k lists are merged into k/2 lists with average 2N/k length, then k/4k/4, k/8k/8 and so on.
Repeat this procedure until we get the final sorted linked list.
Thus, we'll traverse almost N nodes per pairing and merging, and repeat this procedure about logk times.


描述和图片已经非常直观了 就不详细说了 上代码

class Solution(object):
    def mergeKLists(self, lists):
        """
        :type lists: List[ListNode]
        :rtype: ListNode
        """
        amount = len(lists)
        interval = 1
        while interval < amount:
            for i in range(0, amount - interval, interval * 2):
                lists[i] = self.merge2Lists(lists[i], lists[i + interval])
            interval *= 2
        return lists[0] if amount > 0 else lists

    def merge2Lists(self, l1, l2):
        head = point = ListNode(0)
        while l1 and l2:
            if l1.val <= l2.val:
                point.next = l1
                l1 = l1.next
            else:
                point.next = l2
                l2 = l1
                l1 = point.next.next
            point = point.next
        if not l1:
            point.next=l2
        else:
            point.next=l1
        return head.next

Time complexity : O(Nlog k) where k is the number of linked lists.
We can merge two sorted linked list in O(n) time where n is the total number of nodes in two lists.
Space complexity : O(1)
We can merge two sorted linked lists in O(1) space.
相对于priority queue解法的空间复杂度O(n), 这个空间复杂度只有O(1),是最佳

To merge k sorted linked lists, one approach is to repeatedly merge two of the linked lists until all k lists have been merged into one. We can use a priority queue to keep track of the minimum element across all k linked lists at any given time. Here's the code to implement this idea: ``` struct ListNode { int val; ListNode* next; ListNode(int x) : val(x), next(NULL) {} }; // Custom comparator for the priority queue struct CompareNode { bool operator()(const ListNode* node1, const ListNode* node2) const { return node1->val > node2->val; } }; ListNode* mergeKLists(vector<ListNode*>& lists) { priority_queue<ListNode*, vector<ListNode*>, CompareNode> pq; for (ListNode* list : lists) { if (list) { pq.push(list); } } ListNode* dummy = new ListNode(-1); ListNode* curr = dummy; while (!pq.empty()) { ListNode* node = pq.top(); pq.pop(); curr->next = node; curr = curr->next; if (node->next) { pq.push(node->next); } } return dummy->next; } ``` We start by initializing a priority queue with all the head nodes of the k linked lists. We use a custom comparator that compares the values of two nodes and returns true if the first node's value is less than the second node's value. We then create a dummy node to serve as the head of the merged linked list, and a current node to keep track of the last node in the merged linked list. We repeatedly pop the minimum node from the priority queue and append it to the merged linked list. If the popped node has a next node, we push it onto the priority queue. Once the priority queue is empty, we return the head of the merged linked list. Note that this implementation has a time complexity of O(n log k), where n is the total number of nodes across all k linked lists, and a space complexity of O(k).
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值