一、进程通信基础概念
1.1 进程隔离原理
现代操作系统通过虚拟内存技术为每个进程创建独立的地址空间,这种隔离机制保障了系统的安全性,但也导致进程无法直接访问彼此的内存数据。进程间通信(IPC)正是为解决这一矛盾而设计的核心机制。
1.2 IPC分类体系
主要通信方式可分为:
-
传统Unix IPC:管道、FIFO
-
System V IPC:消息队列、信号量、共享内存
-
POSIX IPC:改进的消息队列、信号量、共享内存
-
网络扩展:套接字(本地/网络)
-
高级封装:D-Bus、RPC等
二、核心通信机制详解
2.1 匿名管道(Anonymous Pipes)
实现原理:
使用单向数据通道,通过pipe()系统调用创建,返回两个文件描述符(fd[0]读端,fd[1]写端)
#include <unistd.h>
#include <stdio.h>
#define BUFFER_SIZE 25
int main() {
int fd[2];
pid_t pid;
char buffer[BUFFER_SIZE];
if (pipe(fd) == -1) {
perror("pipe creation failed");
exit(EXIT_FAILURE);
}
pid = fork();
if (pid == 0) { // 子进程
close(fd[1]); // 关闭写端
read(fd[0], buffer, BUFFER_SIZE);
printf("Child received: %s\n", buffer);
close(fd[0]);
} else { // 父进程
close(fd[0]); // 关闭读端
const char* msg = "Hello from parent";
write(fd[1], msg, strlen(msg)+1);
close(fd[1]);
wait(NULL);
}
return 0;
}
2.2 命名管道(FIFO)
创建与使用:
bash
复制
mkfifo /tmp/myfifo # 命令行创建
写入端代码:
#include <fcntl.h>
#include <sys/stat.h>
int main() {
int fd = open("/tmp/myfifo", O_WRONLY);
char* data = "FIFO Message";
write(fd, data, strlen(data)+1);
close(fd);
return 0;
}
读取端代码:
#include <fcntl.h>
int main() {
int fd = open("/tmp/myfifo", O_RDONLY);
char buffer[100];
read(fd, buffer, sizeof(buffer));
printf("Received: %s\n", buffer);
close(fd);
return 0;
}
2.3 System V消息队列
完整示例:
#include <sys/ipc.h>
#include <sys/msg.h>
struct msg_buffer {
long msg_type;
char msg_text[100];
};
int main() {
key_t key = ftok("progfile", 65);
int msgid = msgget(key, 0666 | IPC_CREAT);
// 发送消息
struct msg_buffer message = {1, "Message Content"};
msgsnd(msgid, &message, sizeof(message), 0);
// 接收消息
msgrcv(msgid, &message, sizeof(message), 1, 0);
printf("Received: %s\n", message.msg_text);
msgctl(msgid, IPC_RMID, NULL); // 清理队列
return 0;
}
2.4 共享内存进阶
带同步的共享内存示例:
#include <sys/shm.h>
#include <sys/sem.h>
union semun {
int val;
struct semid_ds *buf;
unsigned short *array;
};
int main() {
key_t key = ftok("shmfile",65);
int shmid = shmget(key, 1024, 0666|IPC_CREAT);
char *str = (char*) shmat(shmid,(void*)0,0);
// 创建信号量
int semid = semget(key, 1, 0666|IPC_CREAT);
union semun arg;
arg.val = 1; // 二进制信号量
semctl(semid, 0, SETVAL, arg);
struct sembuf sb = {0, -1, 0}; // P操作
semop(semid, &sb, 1);
// 临界区操作
sprintf(str, "Shared Memory Data");
printf("Data written: %s\n", str);
sb.sem_op = 1; // V操作
semop(semid, &sb, 1);
shmdt(str);
shmctl(shmid, IPC_RMID, NULL);
semctl(semid, 0, IPC_RMID);
return 0;
}
2.5 POSIX信号量
生产者-消费者模型示例:
#include <semaphore.h>
#include <fcntl.h>
#define SHM_SIZE 1024
int main() {
sem_t *empty = sem_open("/empty", O_CREAT, 0644, 5);
sem_t *full = sem_open("/full", O_CREAT, 0644, 0);
sem_t *mutex = sem_open("/mutex", O_CREAT, 0644, 1);
int shm_fd = shm_open("/buffer", O_CREAT|O_RDWR, 0666);
ftruncate(shm_fd, SHM_SIZE);
char *buffer = mmap(0, SHM_SIZE, PROT_WRITE, MAP_SHARED, shm_fd, 0);
// 生产者逻辑
for(int i=0; i<10; i++) {
sem_wait(empty);
sem_wait(mutex);
// 写入共享内存
sprintf(buffer, "Item %d", i);
sem_post(mutex);
sem_post(full);
}
sem_close(empty);
sem_unlink("/empty");
// 类似清理其他信号量和共享内存
return 0;
}
三、高级通信技术
3.1 域套接字(Unix Domain Socket)
服务端实现:
#include <sys/socket.h>
#include <sys/un.h>
#define SOCK_PATH "/tmp/example.sock"
int main() {
int server_fd = socket(AF_UNIX, SOCK_STREAM, 0);
struct sockaddr_un addr;
memset(&addr, 0, sizeof(addr));
addr.sun_family = AF_UNIX;
strncpy(addr.sun_path, SOCK_PATH, sizeof(addr.sun_path)-1);
bind(server_fd, (struct sockaddr*)&addr, sizeof(addr));
listen(server_fd, 5);
int client_fd = accept(server_fd, NULL, NULL);
char buffer[100];
read(client_fd, buffer, sizeof(buffer));
printf("Received: %s\n", buffer);
close(client_fd);
unlink(SOCK_PATH);
return 0;
}
3.2 内存映射文件(mmap)
跨进程文件映射示例:
#include <sys/mman.h>
int main() {
int fd = open("data.bin", O_RDWR | O_CREAT, 0666);
ftruncate(fd, 4096);
char *mem = mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
// 写入数据
sprintf(mem, "Memory mapped data");
// 同步到磁盘
msync(mem, 4096, MS_SYNC);
munmap(mem, 4096);
close(fd);
return 0;
}
427

被折叠的 条评论
为什么被折叠?



